Day30 重新安排行程 + N皇后 + 解数独

332 重新安排行程

题目链接:
332. 重新安排行程 - 力扣(LeetCode)

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

  • 例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前。

假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]

思路:
本题有点难,主要是学习了代码随想录的方法。使用unordered_map<string, map<string, int>> targets;记录(出发机场,目的机场,次数)。

参考链接:代码随想录 (programmercarl.com)

class Solution {
public:
    // unordered_map<出发机场, map<到达机场, 航班次数>> targets
    unordered_map<string, map<string, int>> targets;

    bool backtracking(int ticketNum, vector<string>& result)
    {
        if (result.size() == ticketNum + 1) {
            return true;
        }
        for (pair<const string, int>& target : targets[result[result.size() - 1]])
        {
            if (target.second > 0 )
            {
                result.push_back(target.first);
                target.second--;
                if (backtracking(ticketNum, result)) return true;
                result.pop_back();
                target.second++;
            }
        }
        return false;
    }

    vector<string> findItinerary(vector<vector<string>>& tickets) {
        vector<string> result;
        for (const vector<string>& vec : tickets) {
            targets[vec[0]][vec[1]]++; // 记录映射关系
        }
        result.push_back("JFK");
        backtracking(tickets.size(), result);
        return result;
    }
};

51 N皇后

题目链接:
51. N 皇后 - 力扣(LeetCode)

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]

思路:
按行遍历每一列,并在进入下一行时判断是否合法,若最终遍历到最后一行,则得到一个方案。

class Solution {
public:
    vector<vector<string>> result;

    bool isValid(int row, int col, vector<string>& chessboard, int n)
    {
        // 检查列
        for (int i = 0; i < row; i++)
        {
            if (chessboard[i][col] == 'Q') 
            {
                return false;
            }
        }

        //检查45度角
        for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }

        //检查135度角
        for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++)
        {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }

    void backtracking(int n, int row, vector<string>& chessboard)
    {
        if(row == n)
        {
            result.push_back(chessboard);
            return;
        }
        for (int col = 0; col < n; col++)
        {
            if (isValid(row, col, chessboard, n))
            {
                chessboard[row][col] = 'Q';
                backtracking(n, row + 1, chessboard);
                chessboard[row][col] = '.';
            }
        }
    }

    vector<vector<string>> solveNQueens(int n) {
        vector<string> chessboard(n, string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

37 解数独

题目链接:37. 解数独 - 力扣(LeetCode)

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

思路:
本题较难,自己试图写了,没写对,建议学习代码随想录讲解。

参考题解:
代码随想录 (programmercarl.com)

class Solution {
public:
    bool isValid(int row, int col, char val, vector<vector<char>>& board)
    {
        for (int i = 0; i < 9; i++)
        {
            if (board[row][i] == val)
            {
                return false;
            }
        }

        for(int i = 0; i < 9; i++)
        {
            if( board[i][col] == val)
            {
                return false;
            }
        }

        int startRow = (row / 3) * 3;
        int startCol = (col / 3) * 3;
        for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
            for (int j = startCol; j < startCol + 3; j++) {
                if (board[i][j] == val ) {
                    return false;
                }
            }
        }
        
        return true;
    }

    bool backtracking(vector<vector<char>>& board)
    {
        for (int i = 0; i < board.size(); i++)
        {
            for (int j = 0; j < board[0].size(); j++)
            {
                if (board[i][j] == '.')
                {
                    for (char k = '1'; k <= '9'; k++)
                    {
                        if (isValid(i, j, k, board))
                        {
                            board[i][j] = k;
                            if (backtracking(board)) return true;
                            board[i][j] = '.';  
                        }
                    }
                    return false;
                }
            }
        }
        return true;
    }
    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值