332 重新安排行程
题目链接:
332. 重新安排行程 - 力扣(LeetCode)
给你一份航线列表 tickets
,其中 tickets[i] = [fromi, toi]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程
["JFK", "LGA"]
与["JFK", "LGB"]
相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]
思路:
本题有点难,主要是学习了代码随想录的方法。使用unordered_map<string, map<string, int>> targets;
记录(出发机场,目的机场,次数)。
参考链接:代码随想录 (programmercarl.com)
class Solution {
public:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result)
{
if (result.size() == ticketNum + 1) {
return true;
}
for (pair<const string, int>& target : targets[result[result.size() - 1]])
{
if (target.second > 0 )
{
result.push_back(target.first);
target.second--;
if (backtracking(ticketNum, result)) return true;
result.pop_back();
target.second++;
}
}
return false;
}
vector<string> findItinerary(vector<vector<string>>& tickets) {
vector<string> result;
for (const vector<string>& vec : tickets) {
targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK");
backtracking(tickets.size(), result);
return result;
}
};
51 N皇后
题目链接:
51. N 皇后 - 力扣(LeetCode)
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
思路:
按行遍历每一列,并在进入下一行时判断是否合法,若最终遍历到最后一行,则得到一个方案。
class Solution {
public:
vector<vector<string>> result;
bool isValid(int row, int col, vector<string>& chessboard, int n)
{
// 检查列
for (int i = 0; i < row; i++)
{
if (chessboard[i][col] == 'Q')
{
return false;
}
}
//检查45度角
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
//检查135度角
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++)
{
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
void backtracking(int n, int row, vector<string>& chessboard)
{
if(row == n)
{
result.push_back(chessboard);
return;
}
for (int col = 0; col < n; col++)
{
if (isValid(row, col, chessboard, n))
{
chessboard[row][col] = 'Q';
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.';
}
}
}
vector<vector<string>> solveNQueens(int n) {
vector<string> chessboard(n, string(n, '.'));
backtracking(n, 0, chessboard);
return result;
}
};
37 解数独
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
思路:
本题较难,自己试图写了,没写对,建议学习代码随想录讲解。
参考题解:
代码随想录 (programmercarl.com)
class Solution {
public:
bool isValid(int row, int col, char val, vector<vector<char>>& board)
{
for (int i = 0; i < 9; i++)
{
if (board[row][i] == val)
{
return false;
}
}
for(int i = 0; i < 9; i++)
{
if( board[i][col] == val)
{
return false;
}
}
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == val ) {
return false;
}
}
}
return true;
}
bool backtracking(vector<vector<char>>& board)
{
for (int i = 0; i < board.size(); i++)
{
for (int j = 0; j < board[0].size(); j++)
{
if (board[i][j] == '.')
{
for (char k = '1'; k <= '9'; k++)
{
if (isValid(i, j, k, board))
{
board[i][j] = k;
if (backtracking(board)) return true;
board[i][j] = '.';
}
}
return false;
}
}
}
return true;
}
void solveSudoku(vector<vector<char>>& board) {
backtracking(board);
}
};