深度学习+pytorch自学笔记(九)——深度卷积神经网络(AlexNet)、使用重复元素的网络(VGG)、网络中的网络(NiN)

参考书籍《动手学深度学习(pytorch版),参考网址为:

https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter05_CNN/5.1_conv-layer

https://zh-v2.d2l.ai/chapter_convolutional-neural-networks/index.html

请大家也多多支持这两个很好用的平台~

大部分内容为书中内容,也有部分自己实验和添加的内容,如涉及侵权,会进行删除。

一、深度卷积神经网络(AlexNet)

在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。

我们在上一节看到,神经网络可以直接基于图像的原始像素进行分类。这种称为端到端(end-to-end)的方法节省了很多中间步骤。然而,在很长一段时间里更流行的是研究者通过勤劳与智慧所设计并生成的手工特征。这类图像分类研究的主要流程是:

1.获取图像数据集;
2.使用已有的特征提取函数生成图像的特征;
3.使用机器学习模型对图像的特征分类。

计算机视觉流程中真正重要的是数据和特征。也就是说,使用较干净的数据集和较有效的特征甚至比机器学习模型的选择对图像分类结果的影响更大。

1.1 学习特征表示

参考链接:https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter05_CNN/5.6_alexnet

1.2 AlexNet

2012年,AlexNet横空出世。这个模型的名字来源于论文第一作者的姓名Alex Krizhevsky [1]。AlexNet使用了8层卷积神经网络,并以很大的优势赢得了ImageNet 2012图像识别挑战赛。它首次证明了学习到的特征可以超越手工设计的特征,从而一举打破计算机视觉研究的前状。

在这里插入图片描述

AlexNet与LeNet的设计理念非常相似,但也有显著的区别。
在这里插入图片描述

第一,与相对较小的LeNet相比,AlexNet包含8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。下面我们来详细描述这些层的设计。

AlexNet第一层中的卷积窗口形状是11×11。因为ImageNet中绝大多数图像的高和宽均比MNIST图像的高和宽大10倍以上,ImageNet图像的物体占用更多的像素,所以需要更大的卷积窗口来捕获物体。第二层中的卷积窗口形状减小到5×5,之后全采用3×3。此外,第一、第二和第五个卷积层之后都使用了窗口形状为3×3、步幅为2的最大池化层。而且,AlexNet使用的卷积通道数也大于LeNet中的卷积通道数数十倍。

紧接着最后一个卷积层的是两个输出个数为4096的全连接层。这两个巨大的全连接层带来将近1 GB的模型参数。由于早期显存的限制,最早的AlexNet使用双数据流的设计使一个GPU只需要处理一半模型。幸运的是,显存在过去几年得到了长足的发展,因此通常我们不再需要这样的特别设计了。

第二,AlexNet将sigmoid激活函数改成了更加简单的ReLU激活函数。一方面,ReLU激活函数的计算更简单,例如它并没有sigmoid激活函数中的求幂运算。另一方面,ReLU激活函数在不同的参数初始化方法下使模型更容易训练。这是由于当sigmoid激活函数输出极接近0或1时,这些区域的梯度几乎为0,从而造成反向传播无法继续更新部分模型参数;而ReLU激活函数在正区间的梯度恒为1。因此,若模型参数初始化不当,sigmoid函数可能在正区间得到几乎为0的梯度,从而令模型无法得到有效训练。

第三,AlexNet通过丢弃法(参见3.13节)来控制全连接层的模型复杂度。而LeNet并没有使用丢弃法。

第四,AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。我们将在后面的图像增广详细介绍这种方法。

卷积神经网络不断增加输出通道数原因:由于一层卷积的参数量不够,所以要多几层增加参数量,即提升拟合能力,增加模型复杂度。
多层卷积可以看做(实际上也有证据)是从低阶特征逐渐抽象到高阶特征,逐渐对信号做更容易处理的变换,逐渐进行信息压缩的过程。)

demo1:

import time
import torch
import myutils
from torch import nn

start =  time.time()
print(start)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
            nn.ReLU(),
            nn.MaxPool2d(3, 2), # kernel_size, stride
            # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽
            nn.Conv2d(256, 384, 3, 1, 1), # 同样是使得输出与输入高宽一致
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )
         # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        self.fc = nn.Sequential(
            nn.Linear(256*5*5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
            nn.Linear(4096, 10),
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output

net = AlexNet()
print(net)

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = myutils.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)

loss_list, train_acc_list, test_acc_list = myutils.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
myutils.show_img(num_epochs, loss_list, train_acc_list, test_acc_list)

end = time.time() - start
print('所花时间为: %.3f' % (end))

读取数据函数修改为:

def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    loss_list, train_acc_list, test_acc_list = [], [], []
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()  # 转到cpu上面来算
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1  # 批量计数
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
        loss_list.append(train_l_sum / batch_count)
        train_acc_list.append(train_acc_sum / n)
        test_acc_list.append(test_acc)

    return loss_list, train_acc_list, test_acc_list

out1:

AlexNet(
  (conv): Sequential(
    (0): Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU()
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU()
    (8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU()
    (10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU()
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=6400, out_features=4096, bias=True)
    (1): ReLU()
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU()
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=10, bias=True)
  )
)
training on  cuda
epoch 1, loss 0.0047, train acc 0.770, test acc 0.865, time 128.3 sec
epoch 2, loss 0.0025, train acc 0.879, test acc 0.889, time 128.8 sec
epoch 3, loss 0.0022, train acc 0.898, test acc 0.901, time 130.4 sec
epoch 4, loss 0.0019, train acc 0.908, test acc 0.900, time 131.4 sec
epoch 5, loss 0.0018, train acc 0.913, test acc 0.902, time 129.9 sec

网络模型另一种定义方式:

demo2:

from torch import nn

net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过度拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

print(net)

out2:

Sequential(
  (0): Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4), padding=(1, 1))
  (1): ReLU()
  (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (4): ReLU()
  (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (7): ReLU()
  (8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): ReLU()
  (10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU()
  (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  (13): Flatten(start_dim=1, end_dim=-1)
  (14): Linear(in_features=6400, out_features=4096, bias=True)
  (15): ReLU()
  (16): Dropout(p=0.5, inplace=False)
  (17): Linear(in_features=4096, out_features=4096, bias=True)
  (18): ReLU()
  (19): Dropout(p=0.5, inplace=False)
  (20): Linear(in_features=4096, out_features=10, bias=True)
)

二、使用重复元素的网络(VGG)

AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet作者对它们的卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet指明了深度卷积神经网络可以取得出色的结果,但并没有提供简单的规则以指导后来的研究者如何设计新的网络。我们将在本章的后续几节里介绍几种不同的深度网络设计思路。

本节介绍VGG,它的名字来源于论文作者所在的实验室Visual Geometry Group [1]。VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。

2.1 VGG块

VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为3\times 33×3的卷积层后接上一个步幅为2、窗口形状为2\times 22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量和输入输出通道数。

对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核优于采用大的卷积核,因为可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。例如,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。

2.2 VGG网络

与AlexNet和LeNet一样,VGG网络由卷积层模块后接全连接层模块构成。卷积层模块串联数个vgg_block,其超参数由变量conv_arch定义。该变量指定了每个VGG块里卷积层个数和输入输出通道数。全连接模块则跟AlexNet中的一样。

现在我们构造一个VGG网络。它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。第一块的输入输出通道分别是1(因为下面要使用的Fashion-MNIST数据的通道数为1)和64,之后每次对输出通道数翻倍,直到变为512。因为这个网络使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。

在这里插入图片描述
demo3:

import torch
from torch import nn
import d2lzh_pytorch as d2l

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# VGG块
def vgg_block(num_convs, in_channels, out_channels):  # num_convs卷积层个数
    blk = []
    for i in range(num_convs):
        if i == 0:  # 第一个卷积层
            blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 最后加上一个池化层,这里会使宽高减半
    return nn.Sequential(*blk)

# VGG网络
'''
VGG网络由卷积层模块后接全连接层模块构成。卷积层模块串联数个vgg_block,其超参数由变量conv_arch定义
构造一个VGG网络。它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。第一块的输入输出通道分别是1(因为下面要使用的Fashion-MNIST数据的通道数为1)和64,
之后每次对输出通道数翻倍,直到变为512。因为这个网络使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。
'''
conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512)) # 指定了每个VGG块里卷积层个数和输入输出通道数
# 经过5个vgg_block, 宽高会减半5次, 变成 224/32 = 7
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_units = 4096 # 任意

# 实现VGG-11
def vgg(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷积层部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每经过一个vgg_block都会使宽高减半
        net.add_module("vgg_block_" + str(i+1), vgg_block(num_convs, in_channels, out_channels))
    # 全连接层部分
    net.add_module("fc", nn.Sequential(d2l.FlattenLayer(),  # 对x形状进行转换,batch_size * ...送入全连接层
                                 nn.Linear(fc_features, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, 10)
                                ))
    return net

# 构造一个高和宽均为224的单通道数据样本来观察每一层的输出形状
net = vgg(conv_arch, fc_features, fc_hidden_units)
X = torch.rand(1, 1, 224, 224)

# named_children获取一级子模块及其名字(named_modules会返回所有子模块,包括子模块的子模块)
for name, blk in net.named_children():
    X = blk(X)
    print(name, 'output shape: ', X.shape)

# 获取数据和训练模型
# 因为VGG-11计算上比AlexNet更加复杂,出于测试的目的构造一个通道数更小,或者说更窄的网络在Fashion-MNIST数据集上进行训练
ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio),
                   (2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = vgg(small_conv_arch, fc_features // ratio, fc_hidden_units // ratio)
print(net)

batch_size = 64
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

d2l.FlattenLayer

class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()
    def forward(self, x): # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

out3:

vgg_block_1 output shape:  torch.Size([1, 64, 112, 112])
vgg_block_2 output shape:  torch.Size([1, 128, 56, 56])
vgg_block_3 output shape:  torch.Size([1, 256, 28, 28])
vgg_block_4 output shape:  torch.Size([1, 512, 14, 14])
vgg_block_5 output shape:  torch.Size([1, 512, 7, 7])
fc output shape:  torch.Size([1, 10])
Sequential(
  (vgg_block_1): Sequential(
    (0): Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_2): Sequential(
    (0): Conv2d(1, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_3): Sequential(
    (0): Conv2d(2, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_4): Sequential(
    (0): Conv2d(4, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_5): Sequential(
    (0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): FlattenLayer()
    (1): Linear(in_features=392, out_features=64, bias=True)
    (2): ReLU()
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=64, out_features=64, bias=True)
    (5): ReLU()
    (6): Dropout(p=0.5, inplace=False)
    (7): Linear(in_features=64, out_features=10, bias=True)
  )
)
training on  cuda
epoch 1, loss 0.0101, train acc 0.755, test acc 0.859, time 255.9 sec
epoch 2, loss 0.0051, train acc 0.882, test acc 0.902, time 238.1 sec
epoch 3, loss 0.0043, train acc 0.900, test acc 0.908, time 225.5 sec
epoch 4, loss 0.0038, train acc 0.913, test acc 0.914, time 230.3 sec
epoch 5, loss 0.0035, train acc 0.919, test acc 0.918, time 153.9 sec

三、网络中的网络(NiN)

前几节介绍的LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。本节我们介绍网络中的网络(NiN)。它提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。

3.1 NiN块

我们知道,卷积层的输入和输出通常是四维数组(样本,通道,高,宽),而全连接层的输入和输出则通常是二维数组(样本,特征)。如果想在全连接层后再接上卷积层,则需要将全连接层的输出变换为四维。回忆在5.3节(多输入通道和多输出通道)里介绍的1×1卷积层。它可以看成全连接层,其中空间维度(高和宽)上的每个元素相当于样本,通道相当于特征。因此,NiN使用1×1卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。图中对比了NiN同AlexNet和VGG等网络在结构上的主要区别。

在这里插入图片描述
NiN块是NiN中的基础块。它由一个卷积层加两个充当全连接层的1×1卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二和第三个卷积层的超参数一般是固定的。

3.2 NiN模型

NiN是在AlexNet问世不久后提出的。它们的卷积层设定有类似之处。NiN使用卷积窗口形状分别为11×11、5×5和3×3的卷积层,相应的输出通道数也与AlexNet中的一致。每个NiN块后接一个步幅为2、窗口形状为3×3的最大池化层。

除使用NiN块以外,NiN还有一个设计与AlexNet显著不同:NiN去掉了AlexNet最后的3个全连接层,取而代之地,NiN使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。这里的全局平均池化层即窗口形状等于输入空间维形状的平均池化层。NiN的这个设计的好处是可以显著减小模型参数尺寸,从而缓解过拟合。然而,该设计有时会造成获得有效模型的训练时间的增加。

demo4:

import torch
from torch import nn
import d2lzh_pytorch as d2l
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# NiN块
def nin_block(in_channels, out_channels, kernel_size, stride, padding):
    blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
                        nn.ReLU(),
                        nn.Conv2d(out_channels, out_channels, kernel_size=1),
                        nn.ReLU(),
                        nn.Conv2d(out_channels, out_channels, kernel_size=1),
                        nn.ReLU())
    return blk

# 局平均池化层
class GlobalAvgPool2d(nn.Module):
    # 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现
    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()
    def forward(self, x):
        return F.avg_pool2d(x, kernel_size=x.size()[2:]) # [2:]表示取到高和宽

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, stride=4, padding=0),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(96, 256, kernel_size=5, stride=1, padding=2),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(256, 384, kernel_size=3, stride=1, padding=1),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, stride=1, padding=1),
    GlobalAvgPool2d(),
    # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
    d2l.FlattenLayer())

# 构建一个数据样本来查看每一层的输出形状
X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children():
    X = blk(X)
    print(name, 'output shape: ', X.shape)

# 获取数据和训练模型,学习率较大
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.002, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

out4:

0 output shape:  torch.Size([1, 96, 54, 54])
1 output shape:  torch.Size([1, 96, 26, 26])
2 output shape:  torch.Size([1, 256, 26, 26])
3 output shape:  torch.Size([1, 256, 12, 12])
4 output shape:  torch.Size([1, 384, 12, 12])
5 output shape:  torch.Size([1, 384, 5, 5])
6 output shape:  torch.Size([1, 384, 5, 5])
7 output shape:  torch.Size([1, 10, 5, 5])
8 output shape:  torch.Size([1, 10, 1, 1])
9 output shape:  torch.Size([1, 10])
training on  cuda
epoch 1, loss 0.0101, train acc 0.513, test acc 0.734, time 260.9 sec
epoch 2, loss 0.0050, train acc 0.763, test acc 0.754, time 175.1 sec
epoch 3, loss 0.0041, train acc 0.808, test acc 0.826, time 151.0 sec
epoch 4, loss 0.0037, train acc 0.828, test acc 0.827, time 151.0 sec
epoch 5, loss 0.0034, train acc 0.839, test acc 0.831, time 151.0 sec

小结

1.NiN重复使用由卷积层和代替全连接层的1\times 11×1卷积层构成的NiN块来构建深层网络。
2.NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数的NiN块和全局平均池化层。
3.NiN的以上设计思想影响了后面一系列卷积神经网络的设计。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值