图论最小生成树周结

所谓最小生成树就是一个有N个点的图,边一定是大于N-1条的,图的最小生成树,就是在这些边中选择N-1条出来,连接所有的N个点,这N-1条边的边权之和就是所有方案的最小的

用两个题分解一下求最小生成树的两种算法Prim算法和Kruskal算法

最优布线问题


时间限制: 1000 ms         内存限制: 65536 KB
提交数: 3050     通过数: 1885

【题目描述】

学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。

当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。

现在由你负责连接这些计算机,任务是使任意两台计算机都连通(不管是直接的或间接的)。

【输入】

第一行为整数n(2≤n≤100),表示计算机的数目。此后的n行,每行n个整数。第x+1行y列的整数表示直接连接第x台计算机和第y台计算机的费用。

【输出】

一个整数,表示最小的连接费用。

【输入样例】

3
0 1 2
1 0 1
2 1 0

【输出样例】

2

【提示】

注:表示连接1和2,2和3,费用为2。

#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
int mapp[150][150];
int dis[150];
int vis[150];
int n;
 
void prim()
{
    int sum=0;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++) dis[i]=mapp[1][i];
    vis[1]=1;
    dis[1]=1;
    for(int i=1;i<=n-1;i++){
        int minn=inf;
        int u;
        for(int j=1;j<=n;j++){
            if(!vis[j]&&minn>dis[j]){
                u=j;
                minn=dis[j];
            }
        }
        vis[u]=1;
        sum+=minn;
        for(int j=1;j<=n;j++){
            if(!vis[j]&&mapp[u][j]<dis[j]){
                dis[j]=mapp[u][j];
            }
        }
 
    }
    cout<<sum<<endl;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
 
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            cin>>mapp[i][j];
        }
    }
    prim();
 
    return 0;
}

 

最短网络(agrinet)


时间限制: 1000 ms         内存限制: 65536 KB
提交数: 2583     通过数: 1851

【题目描述】

农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过100000100000 。

【输入】

第一行:农场的个数,N(3≤N≤100)N(3≤N≤100) 。

第二行..结尾:后来的行包含了一个N×NN×N 的矩阵,表示每个农场之间的距离。理论上,他们是NN 行,每行由NN 个用空格分隔的数组成,实际上,他们限制在8080 个字符,因此,某些行会紧接着另一些行。当然,对角线将会是00 ,因为不会有线路从第ii 个农场到它本身。

【输出】

只有一个输出,其中包含连接到每个农场的光纤的最小长度。

【输入样例】

4
0  4  9  21
4  0  8  17
9  8  0  16
21 17 16  0

【输出样例】

28
#include<bits/stdc++.h>
using namespace std;
struct node
{
    int from;
    int to;
    int dis;
    friend bool operator <(node A,node B)
    {
        return A.dis<B.dis;
    }
 
}s[10005];
int n;
int m=0;
int p[1005];
 
int findth(int x)
{
    if(p[x]==x) return x;
    return p[x]=findth(p[x]);
}
 
void unionn(int x,int y)
{
    int xx=findth(x);
    int yy=findth(y);
    if(xx!=yy) p[yy]=xx;
}
 
void Kruskal()
{
    sort(s+1,s+1+m);
    int sum=0;
    for(int i=1;i<=m;i++){
        if(findth(s[i].from)==(findth(s[i].to))) continue;
        unionn(s[i].from,s[i].to);
        sum+=s[i].dis;
    }
    cout<<sum<<endl;
}
int main()
{
    cin>>n;
 
    for(int i=1;i<=n;i++) p[i]=i;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            int x;
            cin>>x;
            if(x!=0){
                m++;
                s[m].from=i;
                s[m].to=j;
                s[m].dis=x;
            }
        }
    }
    Kruskal();
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值