所谓最小生成树就是一个有N个点的图,边一定是大于N-1条的,图的最小生成树,就是在这些边中选择N-1条出来,连接所有的N个点,这N-1条边的边权之和就是所有方案的最小的
用两个题分解一下求最小生成树的两种算法Prim算法和Kruskal算法
最优布线问题时间限制: 1000 ms 内存限制: 65536 KB 提交数: 3050 通过数: 1885 【题目描述】学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。 当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。 现在由你负责连接这些计算机,任务是使任意两台计算机都连通(不管是直接的或间接的)。 【输入】第一行为整数n(2≤n≤100),表示计算机的数目。此后的n行,每行n个整数。第x+1行y列的整数表示直接连接第x台计算机和第y台计算机的费用。 【输出】一个整数,表示最小的连接费用。 【输入样例】3 0 1 2 1 0 1 2 1 0 【输出样例】2 【提示】注:表示连接1和2,2和3,费用为2。 |
#include<bits/stdc++.h> using namespace std; const int inf=0x3f3f3f3f; int mapp[150][150]; int dis[150]; int vis[150]; int n; void prim() { int sum=0; memset(vis,0,sizeof(vis)); for(int i=1;i<=n;i++) dis[i]=mapp[1][i]; vis[1]=1; dis[1]=1; for(int i=1;i<=n-1;i++){ int minn=inf; int u; for(int j=1;j<=n;j++){ if(!vis[j]&&minn>dis[j]){ u=j; minn=dis[j]; } } vis[u]=1; sum+=minn; for(int j=1;j<=n;j++){ if(!vis[j]&&mapp[u][j]<dis[j]){ dis[j]=mapp[u][j]; } } } cout<<sum<<endl; } int main() { ios::sync_with_stdio(false); cin>>n; for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ cin>>mapp[i][j]; } } prim(); return 0; } |
最短网络(agrinet)时间限制: 1000 ms 内存限制: 65536 KB 提交数: 2583 通过数: 1851 【题目描述】农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过100000100000 。 【输入】第一行:农场的个数,N(3≤N≤100)N(3≤N≤100) 。 第二行..结尾:后来的行包含了一个N×NN×N 的矩阵,表示每个农场之间的距离。理论上,他们是NN 行,每行由NN 个用空格分隔的数组成,实际上,他们限制在8080 个字符,因此,某些行会紧接着另一些行。当然,对角线将会是00 ,因为不会有线路从第ii 个农场到它本身。 【输出】只有一个输出,其中包含连接到每个农场的光纤的最小长度。 【输入样例】4 0 4 9 21 4 0 8 17 9 8 0 16 21 17 16 0 【输出样例】28 |
#include<bits/stdc++.h> using namespace std; struct node { int from; int to; int dis; friend bool operator <(node A,node B) { return A.dis<B.dis; } }s[10005]; int n; int m=0; int p[1005]; int findth(int x) { if(p[x]==x) return x; return p[x]=findth(p[x]); } void unionn(int x,int y) { int xx=findth(x); int yy=findth(y); if(xx!=yy) p[yy]=xx; } void Kruskal() { sort(s+1,s+1+m); int sum=0; for(int i=1;i<=m;i++){ if(findth(s[i].from)==(findth(s[i].to))) continue; unionn(s[i].from,s[i].to); sum+=s[i].dis; } cout<<sum<<endl; } int main() { cin>>n; for(int i=1;i<=n;i++) p[i]=i; for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ int x; cin>>x; if(x!=0){ m++; s[m].from=i; s[m].to=j; s[m].dis=x; } } } Kruskal(); return 0; } |