Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、 总共n张牌;
2、 双方轮流抓牌;
3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
Sample Input
1
3
Sample Output
Kiki
Cici
很明显这道题目的原型还是巴什博弈,很多时候如果想不出解法,就可以换个角度,考虑巴什博弈的(n+1)*k(k=0,1,2,3……)奇异局是怎么来的, 我们可以把问题规模变小,找到那个临界点(n+1),那么这道题目也就迎刃而解了,而这道题目的奇异局就在3*k(k=0,1,2,3……)处,我们假设只剩下3张牌,先手只能摸1或者2张,剩下的牌后手都可以抓完,而如果是3的倍数,那么剩下的一定是3*k+1或3*k+2张牌,又可以构造出3*k的奇异局,所以处于3*k(k=0,1,2,3……)的奇异局中,先手必败。
下面是ac代码
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int main()
{
int n;
while(cin>>n)
{
if(n%3==0)
cout<<"Cici"<<endl;
else
cout<<"Kiki"<<endl;
}
return 0;
}