这道题目很像Nim博弈,但是他与经典的Nim博弈相比,多了一个可以把任意一堆分成两堆的操作,然后问题似乎一下子就变得复杂没有思路起来了,既然想不出思路,又没有经典模型可以套用,那么我们就暴力一点,尝试用SG函数来打表,SG函数就可以解决几乎所有组合博弈的问题,那么我们试着分析一下相比于经典的Nim博弈新加的一种操作,就是将任意一堆分成两堆的操作,用SG函数来表示就是SG(X)=SG(X1+X2),而SG(X1+X2)可以用SG(X1)^SG(X2)解决,那么问题就迎刃而解了,直接枚举所有的状态,最后异或就可以了
但是因为数据范围太大了,直接用SG函数暴力可能会超,一般这种情况都可以找规律的,我们可以先打出部分SG的表,然后尝试一下找规律
我们很容易就可以发现规律,我们假设这一堆石子有n个,由规律可知
当n%4==0,SG(n)=n=1
当n%4==1||2 SG(n)=n
当n%4==3 SG(n)=n+1
然后根据规律直接遍历,最后异或一遍就可以了
下面附上AC代码
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
using namespace std;
typedef long long ll;
//ll a[1000000+5];
//ll SG[1000000+5];
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
ll y,m,d;
ll t;
cin>>t;
while(t--)
{
ll n;
cin>>n;
ll a,k=0;
for(ll i=1;i<=n;i++)
{
cin>>a;
if(a%4==0)
a--;
else if(a%4==3)
a++;
k^=a;
}
if(k)
cout<<"Alice"<<endl;
else
cout<<"Bob"<<endl;
}
return 0;
}