hdu_oj3032Nim or not Nim?(Nim博弈变型+Mulit-SG)

 这道题目很像Nim博弈,但是他与经典的Nim博弈相比,多了一个可以把任意一堆分成两堆的操作,然后问题似乎一下子就变得复杂没有思路起来了,既然想不出思路,又没有经典模型可以套用,那么我们就暴力一点,尝试用SG函数来打表,SG函数就可以解决几乎所有组合博弈的问题,那么我们试着分析一下相比于经典的Nim博弈新加的一种操作,就是将任意一堆分成两堆的操作,用SG函数来表示就是SG(X)=SG(X1+X2),而SG(X1+X2)可以用SG(X1)^SG(X2)解决,那么问题就迎刃而解了,直接枚举所有的状态,最后异或就可以了

但是因为数据范围太大了,直接用SG函数暴力可能会超,一般这种情况都可以找规律的,我们可以先打出部分SG的表,然后尝试一下找规律

我们很容易就可以发现规律,我们假设这一堆石子有n个,由规律可知

当n%4==0,SG(n)=n=1

当n%4==1||2 SG(n)=n

当n%4==3 SG(n)=n+1

然后根据规律直接遍历,最后异或一遍就可以了

下面附上AC代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
using namespace std;
typedef long long ll;
//ll a[1000000+5];
//ll SG[1000000+5];
int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    ll y,m,d;
    ll t;
    cin>>t;
    while(t--)
    {
        ll n;
        cin>>n;
        ll a,k=0;
        for(ll i=1;i<=n;i++)
        {
            cin>>a;
            if(a%4==0)
                a--;
            else if(a%4==3)
                a++;
            k^=a;
        }
        if(k)
            cout<<"Alice"<<endl;
        else
            cout<<"Bob"<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值