Problem Description
曾经,Lele和他姐姐最喜欢,玩得最久的游戏就是俄罗斯方块(Tetris)了。
渐渐得,Lele发觉,玩这个游戏只需要手快而已,几乎不用经过大脑思考。
所以,Lele想出一个新的玩法。
Lele和姐姐先拿出一块长方形的棋盘,这个棋盘有些格子是不可用的,剩下的都是可用的。Lele和姐姐拿出俄罗斯方块里的正方形方块(大小为2*2的正方形方块)轮流往棋盘里放,要注意的是,放进去的正方形方块不能叠在棋盘不可用的格子上,也不能叠在已经放了的正方形方块上。
到最后,谁不能再放正方形方块,谁就输了。
现在,假设每次Lele和姐姐都很聪明,都能按最优策略放正方形,并且每次都是Lele先放正方形,你能告诉他他是否一定能赢姐姐吗?
Input
本题目包含多组测试,请处理到文件结束。
每组测试第一行包含两个正整数N和M(0<N*M<50)分别代表棋盘的行数和列数。
接下来有N行,每行M个0或1的数字代表整个棋盘。
其中0是代表棋盘该位置可用,1是代表棋盘该位置不可用
你可以假定,每个棋盘中,0的个数不会超过40个。
Output
对于每一组测试,如果Lele有把握获胜的话,在一行里面输出"Yes",否则输出"No"。
Sample Input
4 4
0000
0000
0000
0000
4 4
0000
0010
0100
0000
Sample Output
Yes
No
**********************************************************************************************************************************************************
解题思路:用dfs去暴力枚举每个状态,寻找当前状态为必败点还是必胜点就可以得到答案,看一下递归的边界,如果无路可走就为必败点,如果只能进入必胜点那么该点为必败点,只要能进入必败点,该点就为必胜点
仔细解释一下这个深搜过程,其实这个过程中并不是向四面八方深搜的,他是形成了好多个链,从左上角到右下角开始枚举放置棋子或者不放,放了之后继续进行深搜,就是从一个点开始一直往下走这个链,但是这个点先不赋值,直到到达无路可走的时候,就让这个点赋值为0,即为P点,必败点,那么递归进入这个P点的就是N点即必胜点,这样一直往回找,直到找到刚开始进入递归的那个点,判断他是必败点还是必胜点,也就知道了先手有没有必胜策略了。当然中间还有很多细节,恢复两次现场等,第一次恢复现场是,在一个链中如果当前放了之后为必胜点,那么我不放是什么情况继续进入递归,第二个恢复现场是当走完第一个链的时候,这时第一个链的开始是我在这开始的点放这个棋子,如果不放会怎样就利用循环进入第二个链。
下面附上ac代码
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
using namespace std;
typedef long long ll;
char a[55][55];
int dfs(ll n,ll m)
{
for(ll i=0;i<n-1;i++)
{
for(ll j=0;j<m-1;j++)
{
if(a[i][j]=='0'&&a[i+1][j]=='0'&&a[i][j+1]=='0'&&a[i+1][j+1]=='0')
{
a[i][j]=a[i+1][j]=a[i][j+1]=a[i+1][j+1]='1';
if(!dfs(n,m))
{
a[i][j]=a[i+1][j]=a[i][j+1]=a[i+1][j+1]='0';
return 1;
}
a[i][j]=a[i+1][j]=a[i][j+1]=a[i+1][j+1]='0';
}
}
}
return 0;
}
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
ll n,m;
while(cin>>n>>m)
{
for(ll i=0;i<n;i++)
{
cin>>a[i];
}
if(dfs(n,m))
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}