洛谷P2680 [NOIP2015 提高组] 运输计划(树上边差分 + 二分)

该博客主要介绍了如何利用树上差分和二分查找技术解决一道关于树结构的优化问题——运输计划。在给定的一棵带权树中,需要通过改变某些边的权重为0来最大化特定点对间的距离。博主详细阐述了利用边差分进行状态更新,以及采用二分查找确定最大距离的策略。文章包含关键代码实现,展示了从题目解析到算法设计的完整过程。
摘要由CSDN通过智能技术生成

洛谷P2680 [NOIP2015 提高组] 运输计划(树上差分 + 二分)

题意:
一棵带权树,有m个点对(S,T),其中你可以选择把任意一条的边权改为0,求点对dis(S,T)距离的最大值

思路
边差分
二分答案,把 d i s ( s , t ) > a n s dis(s,t)>ans dis(s,t)>ans的全部标记,假设有 n u m num num个点对,用树上差分标记 ( c [ x ] + + , c [ y ] + + , c [ l c a ] − = 2 ) (c[x]++, c[y]++, c[lca]-=2) c[x]++,c[y]++,c[lca]=2,统计每条边标记的权值 ( v a l ) = = n u m (val)==num (val)==num的该边的初始权值的最大值,最后 d i s m a x ( s , t ) − v a l m a x < = a n s dis_{max}(s,t)-val_{max}<=ans dismax(s,t)valmax<=ans则符合二分check

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int maxn  = 600000 + 5;
const int inf   = 0x3f3f3f3f;
int n, m, cnt, num,  c[maxn], deep[maxn], pre[maxn][21], head[maxn],a[maxn];
ll he,mp,dis[maxn];
struct node{
	int to, next;
	ll w;
}edge[maxn << 1];
struct nod{
	int x,y,lca;
}data[maxn];
void addedge(int u, int v,ll w){
	edge[++cnt].to = v;
	edge[cnt].next = head[u];
	edge[cnt].w=w;
	head[u] = cnt;
}
void dfs(int x, int f){
	pre[x][0] = f;
	for(int i = head[x]; i; i = edge[i].next){
		if(edge[i].to != f){
			deep[edge[i].to] = deep[x] + 1;
			dis[edge[i].to] =dis[x]+edge[i].w;
			dfs(edge[i].to, x);
		}
	}
}
void solve(){ 
	for(int j = 1; j <= 18; j++)
		for(int i = 1; i <= n; i++)
			pre[i][j] = pre[pre[i][j - 1]][j - 1];
}
int LCA(int u, int v){
	if(deep[u] < deep[v]) swap(u, v);
	int dc = deep[u] - deep[v];
	for(int i = 0; i <= 18; i++){
		if((1 << i) & dc) u = pre[u][i];
	}
	if(u == v) return u;
	for(int i = 18; ~i; i--){
		if(pre[u][i] != pre[v][i]){
			u = pre[u][i];
			v = pre[v][i];
		}
	}
	return pre[u][0]; 
}
void dfs1(int x, int f,ll val){
	for(int i = head[x]; i; i = edge[i].next) {
	    if(edge[i].to != f){
		    dfs1(edge[i].to, x,edge[i].w);
		    c[x] += c[edge[i].to];
	    }
	}
	if(c[x]==num)he=max(he,val);
}
bool check(ll mid){
	he=num=mp=0;
	memset(c,0,sizeof(c));
	for(int i=1;i<=m;i++){
		int x=data[i].x,y=data[i].y,lca=data[i].lca;
		ll d=dis[x]+dis[y]-2*dis[lca]; 
		if(d>mid) c[x]++, c[y]++, c[lca]-=2, num++,mp=max(mp,d);
	}
	dfs1(1,0,0);
	if(mp-he<=mid)return 1;
	return 0;
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i = 1; i < n; i++){
		ll x,y,z;
		scanf("%lld%lld%lld", &x, &y,&z);
		addedge(x, y, z), addedge(y, x, z);
	}
	dfs(1, -1);
	solve();
	ll l=0,r=0,ans=0;
	for(int i = 1,x,y; i <= m; i++){
		scanf("%d%d",&x,&y);
		data[i]={x,y,LCA(x,y)};
		r=max(r,dis[x]+dis[y]-2*dis[LCA(x,y)]);
	}
	while(l<=r){
		ll mid=(l+r)>>1;
		if(check(mid))ans=mid,r=mid-1;
		else l=mid+1;
	}
	printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值