二进制与字节
1.二进制
1.1概念
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
1.2 为什么计算机要采用二进制?
首先,二进位计数制仅用两个数码。0和1,所以,任何具有二个不同稳定状态的元件都可用来表示数的某一位。而在实际上具有两种明显稳定状态的元件很多。例如,氖灯的“亮”和“熄” ;开关的“开” 和 “关”;电压的“高” 和“低”、“正”和 “负”;纸带上的“有孔”和“无孔”;电路中的“有信号” 和 “无信号”; 磁性材料的南极和北极等等,不胜枚举。 利用这些截然不同的状态来代表数字,是很容易实现的。不仅如此,更重要的是两种截然不同的状态不单有量上的差别,而且是有质上的不同。这样就能大大提高机器的抗干扰能力,提高可靠性。而要找出一个能表示多于二种状态而且简单可靠的器件,就困难得多了。
其次,二进位计数制的四则运算规则十分简单。而且四则运算最后都可归结为加法运算和移位,这样,电子计算机中的运算器线路也变得十分简单了。不仅如此,线路简化了,速度也就可以提高。这也是十进位计数制所不能相比的。
第三,在电子计算机中采用二进制表示数可以节省设备。可 以从理论上证明,用三进位制最省设备,其次就是二进位制。但由于二进位制有包括三进位制在内的其他进位制所没有的优点,所以大多数电子计算机还是采用二进制。此外,由于二进制中只用二个符号 “ 0” 和“1”,因而可用布尔代数来分析和综合机器中的逻辑线路。 这为设计电子计算机线路提供了一个很有用的工具。
第四,二进制的符号“1”和“0”恰好与逻辑运算中的“对”(true)与“错”(false)对应,便于计算机进行逻辑运算。
1.3二进制计数
1.3.1进制表示
在基数 b b b 的位置记数系统(其中 b b b 是一个正自然数,叫做基数), b b b 个基本符号(或者叫数字)对应于包括 0 0 0 的最小 b b b 个自然数。 要产生其他的数,符号在数中的位置要被用到。最后一位的符号用它本身的值,向左一位其值乘以 b b b 。一般来讲,若 b b b 是基底,若有n位整数,用数字 a 0 a 1 a 2 . . . a n − 1 a_0a_1a_2...a_{n-1} a0a1a2...an−1表示它的系数,有m位小数,用数字 c 1 c 2 . . . c m c_1c_2...c_m c1c2...cm表示它的加权系数,则我们在 b b b 进制系统中的表示,如下形式
( a n − 1 a n − 2 . . . a 1 a 0 c 1 c 2 . . . c m ) b = ∑ k = 0 n a k b k + ∑ k = 1 m c k b − k (a_{n-1}a_{n-2}...a_1a_0c_1c_2...c_m)_b=\displaystyle\sum_{k=0}^na_kb^k + \displaystyle\sum_{k=1}^m c_kb^{-k} (an−1an−2...a