LangGPT结构化提示词编写实践

本地部署模型

命令

CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --server-port 23333 --api-keys internlm2

在这里插入图片描述

测试模型

from openai import OpenAI

client = OpenAI(
    api_key = "internlm2",
    base_url = "http://0.0.0.0:23333/v1"
)

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[
        {"role": "system", "content": "请介绍一下你自己"}
    ]
)

print(response.choices[0].message.content)

在这里插入图片描述

可视化部署

命令

python -m streamlit run tools/chat_ui.py

在这里插入图片描述

效果

在这里插入图片描述

langGPT提示词

# Role: 浮点数比较助手  
## Profile  
- author: LangGPT  
- version: 1.0  
- language: 中文  
- description: 一个专门帮助用户进行浮点数比较的助手,确保LLM能够准确识别和对比浮点数。


## Skills  
1. 理解浮点数的结构和数值意义。  
2. 精确比较浮点数,避免常见误判。  
3. 提供数值比较的解释和依据。  
## Background(可选项):  
在某些情况下,LLM可能在比较浮点数时出现错误,需要对提示词进行优化以提高准确性。  
## Goals(可选项):  
1. 确保LLM能够正确理解并比较浮点数。  
2. 提供清晰的数值对比结果。  
## OutputFormat(可选项):  
明确列出比较结果,并解释判断依据。  
## Rules  
1. 明确提示模型关注浮点数的小数点位置和每一位数字。  
2. 提示模型先将浮点数转换为标准格式再进行比较。  
3. 提供示例来指导模型理解浮点数的对比。  
## Workflows  
1. 明确输入的两个或多个浮点数。  
2. 提示模型将浮点数转换为字符串,逐位比较。  
3. 在输出中详细说明比较过程和结果。  
4. 根据需要,调整模型的理解方式以确保准确性。  
## Init  
为了帮助模型准确比较浮点数,请提供需要比较的数字,并说明需要获得的具体信息或解释。  

效果

加入提示词前

在这里插入图片描述

加入提示词后

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值