【高等数学】第一章 函数与极限——第三节 函数的极限

1. 函数极限的概念

当自变量的某个变化过程中
如果对应的函数值无限接近于某个确定的数
那么这个确定的数就叫做在这一变化过程中函数的极限

2. 函数极限的定义

2.1. 自变量趋于有限值时函数的极限

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义
如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε(不论它多么小),总存在正数 δ \delta δ,使得当 x x x满足不等式 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε
那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的极限
记作
lim ⁡ x → x 0 f ( x ) = A 或 f ( x ) → A ( 当 x → x 0 ) lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x\rightarrow x_0}f(x)=A或f(x)\rightarrow A(当x\rightarrow x_0)\\ \lim_{x\rightarrow x_0}f(x)=A\lrArr\\\forall \varepsilon>0,\exist \delta>0,当0<|x-x_0|<\delta时,有|f(x)-A|<\varepsilon xx0limf(x)=Af(x)A(xx0)xx0limf(x)=Aε>0,δ>0,0<xx0<δ时,有f(x)A<ε

  • 单侧极限
    如果 x x x仅从 x 0 x_0 x0的左侧趋于 x 0 x_0 x0,此时 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ可以写成 x 0 − δ < x < x 0 x_0-\delta<x<x_0 x0δ<x<x0
    那么 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的左极限,记作 lim ⁡ x → x 0 − f ( x ) = A 或 f ( x 0 − ) = A \lim_{x\rightarrow x_0^-}f(x)=A或f(x_0^-)=A xx0limf(x)=Af(x0)=A
    如果 x x x仅从 x 0 x_0 x0的右侧趋于 x 0 x_0 x0,此时 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ可以写成 x 0 < x < x 0 + δ x_0<x<x_0+\delta x0<x<x0+δ
    那么 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的右极限,记作 lim ⁡ x → x 0 + f ( x ) = A 或 f ( x 0 + ) = A \lim_{x\rightarrow x_0^+}f(x)=A或f(x_0^+)=A xx0+limf(x)=Af(x0+)=A
    左极限和右极限统称为单侧极限
    • 函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时极限存在的充分必要条件是左极限和右极限各自存在且相等

2.2. 自变量趋于无穷大时函数的极限

设函数 f ( x ) f(x) f(x) ∣ x ∣ |x| x大于某一正数时有定义
如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε(不论它多么小),总存在正数 X X X,使得当 x x x满足不等式 ∣ x ∣ > X |x|>X x>X时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε
那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → ∞ x\rightarrow \infin x时的极限
记作
lim ⁡ x → ∞ f ( x ) = A 或 f ( x ) → A ( 当 x → ∞ ) lim ⁡ x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 , 当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x\rightarrow \infin}f(x)=A或f(x)\rightarrow A(当x\rightarrow \infin)\\ \lim_{x\rightarrow \infin}f(x)=A\lrArr\\\forall \varepsilon>0,\exist X>0,当|x|>X时,有|f(x)-A|<\varepsilon xlimf(x)=Af(x)A(x)xlimf(x)=Aε>0,X>0,x>X时,有f(x)A<ε

  • 单侧极限
    如果 x > 0 x>0 x>0且无限增大(记作 x → + ∞ x\rightarrow+\infin x+
    那么将 ∣ x ∣ > X |x|>X x>X改为 x > X x>X x>X,就可定义 lim ⁡ x → + ∞ f ( x ) = A \lim_{x\rightarrow+\infin}f(x)=A x+limf(x)=A
    如果 x < 0 x<0 x<0 ∣ x ∣ |x| x无限增大(记作 x → − ∞ x\rightarrow-\infin x
    那么将 ∣ x ∣ > X |x|>X x>X改为 x < − X x<-X x<X,就可定义 lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow-\infin}f(x)=A xlimf(x)=A
  • 几何意义
    直线 y = A y=A y=A是函数 y = f ( x ) y=f(x) y=f(x)图形的水平渐近线

3. 函数极限的性质

  • 定理1(函数极限的唯一性)
    如果函数极限收敛
    那么这极限唯一
  • 定理2(函数极限的局部有界性)
    如果函数极限收敛
    那么存在常数 M > 0 M>0 M>0 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有 ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M
  • 定理3(函数极限的局部保号性)
    如果函数极限为 A A A,且 A > 0 A>0 A>0(或 A < 0 A<0 A<0)
    那么存在常数 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有 f ( x ) > 0 ( 或 f ( x ) < 0 ) f(x)>0(或f(x)<0) f(x)>0(f(x)<0)
    • 定理 3 ′ 3' 3
      如果函数极限为 A ( A ≠ 0 ) A(A\ne0) A(A=0)
      那么存在 x 0 x_0 x0的某一去心邻域,当 x x x在这个去心邻域时,有 ∣ f ( x ) ∣ > ∣ A ∣ 2 |f(x)|>\dfrac{|A|}{2} f(x)>2A
    • 推论
      如果在 x 0 x_0 x0的某去心邻域内 f ( x ) ≥ 0 ( 或 f ( x ) ≤ 0 ) f(x)\ge0(或f(x)\le0) f(x)0(f(x)0),而且函数极限为 A A A
      那么 A ≥ 0 ( 或 A ≤ 0 ) A\ge0(或A\le0) A0(A0)
  • 定理4(函数极限与数列极限的关系)
    如果函数 f ( x ) f(x) f(x)趋于 x 0 x_0 x0的极限存在, { x n } \{x_n\} {xn} f ( x ) f(x) f(x)的定义域内任一收敛于 x 0 x_0 x0的数列,且满足 x n ≠ x 0 ( n ∈ N + ) x_n\ne x_0(n\in N_+) xn=x0(nN+)
    那么相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}必收敛,且极限与函数 f ( x ) f(x) f(x)趋于 x 0 x_0 x0的极限相等
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值