【高等数学】第一章 函数与极限——第五节 极限运算法则


极限运算是针对 自变量的同一变化过程

1. 极限运算法则

  • 定理1 两个无穷小的和是无穷小
    • 有限个无穷小之和也是无穷小
  • 定理2 有界函数与无穷小的乘积是无穷小
    • 推论1 常数与无穷小的乘积是无穷小
    • 推论2 有限个无穷小的乘积是无穷小
  • 定理3 如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A,\lim g(x)=B limf(x)=A,limg(x)=B,那么
    ( 1 ) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B (1) \lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x)=A\pm B (1)lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
    ( 2 ) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B (2) \lim[f(x)·g(x)]=\lim f(x)·\lim g(x)=A·B (2)lim[f(x)g(x)]=limf(x)limg(x)=AB
    ( 3 ) lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B ( B ≠ 0 ) (3)\lim \dfrac{f(x)}{g(x)}=\dfrac{\lim f(x)}{\lim g(x)}=\dfrac{A}{B}(B\ne 0) (3)limg(x)f(x)=limg(x)limf(x)=BA(B=0)
    • 推论1 如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,而 c c c为常数,那么 lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)
    • 推论2 如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,且 n n n是正整数,那么 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim[f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n
  • 定理4 设有数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn}。如果 lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ y n = B \lim_{n\rightarrow\infin}x_n=A,\lim_{n\rightarrow\infin}y_n=B nlimxn=A,nlimyn=B那么 ( 1 ) lim ⁡ n → ∞ ( x n ± y n ) = A ± B           ( 2 ) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B                 ( 3 ) lim ⁡ n → ∞ x n y n = A B ( y n ≠ 0 , B ≠ 0 ) (1)\lim_{n\rightarrow\infin}(x_n\pm y_n)=A\pm B\ \ \ \ \ \ \ \ \ \\(2)\lim_{n\rightarrow\infin}(x_n·y_n)=A·B\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \\(3)\lim_{n\rightarrow\infin}\frac{x_n}{y_n}=\dfrac{A}{B}(y_n\ne0,B\ne0) (1)nlim(xn±yn)=A±B         (2)nlim(xnyn)=AB               (3)nlimynxn=BA(yn=0,B=0)
  • 定理5 如果 ϕ ( x ) ≥ ψ ( x ) \phi(x)\ge\psi(x) ϕ(x)ψ(x),而 lim ⁡ ϕ ( x ) = A , lim ⁡ ψ ( x ) = B \lim\phi(x)=A,\lim\psi(x)=B limϕ(x)=A,limψ(x)=B,那么 A ≥ B A\ge B AB
  • 定理6(复合函数的极限运算法则)
    设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在点 x 0 x_0 x0的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A , \lim_{x\rightarrow x_0}g(x)=u_0,\lim_{u\rightarrow u_0}f(u)=A, xx0limg(x)=u0,uu0limf(u)=A,且存在 δ 0 > 0 , \delta_0>0, δ0>0, x ∈ U ∘ ( x 0 , δ 0 ) x\in U^{\circ}(x_0,\delta_0) xU(x0,δ0)时,有 g ( x ) ≠ u 0 g(x)\ne u_0 g(x)=u0,则 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim_{x\rightarrow x_0}f[g(x)]=\lim_{u\rightarrow u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

2. 极限运算方法

  • 设多项式 f ( x ) = a 0 x n + a 1 x n − 1 + . . . + a n f(x)=a_0x^n+a_1x^{n-1}+...+a_n f(x)=a0xn+a1xn1+...+an,则 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) xx0limf(x)=f(x0)
  • 设有理分式函数 F ( x ) = P ( x ) Q ( x ) , F(x)=\frac{P(x)}{Q(x)}, F(x)=Q(x)P(x),其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)都是多项式,于是 lim ⁡ x → x 0 P ( x ) = P ( x 0 ) , lim ⁡ x → x 0 Q ( x ) = Q ( x 0 ) \lim_{x\rightarrow x_0}P(x)=P(x_0),\lim_{x\rightarrow x_0}Q(x)=Q(x_0) xx0limP(x)=P(x0),xx0limQ(x)=Q(x0)如果 Q ( x 0 ) ≠ 0 Q(x_0)\ne 0 Q(x0)=0,那么 lim ⁡ x → x 0 F ( x ) = lim ⁡ x → x 0 P ( x ) Q ( x ) = P ( x 0 ) Q ( x 0 ) = F ( x 0 ) \lim_{x\rightarrow x_0}F(x)=\lim_{x\rightarrow x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}=F(x_0) xx0limF(x)=xx0limQ(x)P(x)=Q(x0)P(x0)=F(x0)如果 Q ( x 0 ) = 0 Q(x_0)= 0 Q(x0)=0,那么要考虑约去零因子以及 lim ⁡ x → ∞ a 0 x m + a 1 x m − 1 + . . . + a m b 0 x n + b 1 x n − 1 + . . . + b n = { 0 , n > m a 0 b 0 , n = m ∞ , n < m \lim_{x\rightarrow \infin}\frac{a_0x^m+a_1x^{m-1}+...+a_m}{b_0x^n+b_1x^{n-1}+...+b_n}=\begin{cases}0,n>m\\\frac{a_0}{b_0},n=m\\\infin,n<m\end{cases} xlimb0xn+b1xn1+...+bna0xm+a1xm1+...+am= 0,n>mb0a0,n=m,n<m等特殊方法
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值