数据治理三大件:元数据、数据标准、数据质量(PPT)

数据治理职能是指导所有其他数据管理领域的活动。数据治理的目的是确保根据数据管理制度和最佳实践正确地管理数据。而数据管理的整体驱动力是确保组织可以从其数据中获得价值,数据治理聚焦于如何制定有关数据的决策,以及人员和流程在数据方面的行为方式。

数据治理项目的范围和焦点依赖于组织需求,但多数项目都包含如下内容:

1)战略。定义、交流和驱动数据战略和数据治理战略的执行。

2)制度。设置与数据、元数据管理、访问、使用、安全和质量有关的制度。

3)标准和质量。设置和强化数据质量、数据架构标准。

4)监督。在质量、制度和数据管理的关键领域提供观察、审计和纠正等措施(通常称为管理职责)。

5)合规。确保组织可以达到数据相关的监管合规性要求。

6)问题管理。识别、定义、升级和处理问题,针对如下领域:数据安全、数据访问、数据质量、合规、数据所有权、制度、标准、术语或者数据治理程序等。

7)数据管理项目。增强提升数据管理实践的努力。

8)数据资产估值。设置标准和流程,以一致的方式定义数据资产的业务价值。

下面这份PPT材料介绍了数据治理管控系统的建设实施,数据治理管控是为解决企业所面临的数据标准问题、数据质量问题、元数据管理问题。推动数据标准在全企业的执行落地,规范化管理构成数据平台的业务和技术基础设施,包括数据管控制度与流程规范文档、信息项定义等。

01 数据管控

e5cc951d80c688f2f20e976e0056ec3b.png

eb6ace246d6966b1632261d274429fdb.png

6af6f7e6dc34d0659fb9b5c89574857b.png

02 元数据管理

6f6a1b3f531f37343188140a7ccab7cd.png

8e5d45f5bc017c7f09fbb80674fed2c1.png

3e2746ef8aa082172fc238d8f1521e88.png

e9891e97d831894ed8ba2e68e8ad3260.png

2f8bfa8e5536bff1ce156fedb2d45a27.png

a76f2651d361aede453548dffcc1bf79.png

a1acd974c94acdca3d41c917e6dee10b.png

3ebe5fb7c3e737ad7c0f885f5f8830bd.png

1b33978718b2077baaca6821475760d6.png

3db837ae13ca67fa688c78f1dc4e7c3c.png

eb586b3b8b40b1dfb95ee92bf96c6acf.png

153179b9ac0f3729e57bee6940cf591a.png

6f0c9ab1de1ee7a9006844d4223b83f2.png

1e8a1c752edcb7048cd58524d23964fd.png

a81db1e069ab9e54a5f30a68c7d54f9c.png

9c335e35905486c9b1158dcd687818a8.png

2429006b9726711454ddebc29937c167.png

edfe80c66721331b1a35a2d8ac55e11d.png

8b6f78fa32d45e4024ec2b083e39037b.png

03 数据标准管理

6dda9ac3f854e3fbdb0955d63fc77c65.png

9fedd0d714c8f654e6c69c77e5866883.png

8c5da0c22a1369574dc6989a3fc981d6.png

b8a8e7d01f62b8772e31e902b86fff0e.png

04 数据质量管理

90cf95839b76514468648c2d48e2785e.png

edb969e68f3778e0cbaaf78270cf795d.png

81e0f4f4bbad3d8ea6fc3ac2adc55b02.png

be5e0629c4fa2fb0a34a93734023eb96.png

3f6789305583c7a50ac38c205beb83e1.png

6b1ad9bd636aea708158fc30bc4b38c0.png

5d85d095fe8a897de1615019e4bf91fe.png

9c1a5c0d60821d96ea1af47b93d48c46.png

dc7562a9f540f77f930d9b0a37101ee6.png

29878a99c399f69722f910d297dc9033.png

6897cef9ef20e0a37727f7a9f79f78c0.png


文章版权归原作者及原出处所有,仅供读者学习参考。因有些无法找到真正来源,如标错来源,或对于文中所使用的图片、文字、链接中所包含的软件/资料等,如标注有误或涉及侵权,请跟我们(微信:yierstart)联系删除。

推荐阅读:
世界的真实格局分析,地球人类社会底层运行原理
不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT)

企业IT技术架构规划方案

论数字化转型——转什么,如何转?

华为干部与人才发展手册(附PPT)

企业10大管理流程图,数字化转型从业者必备!

【中台实践】华为大数据中台架构分享.pdf

华为的数字化转型方法论

华为如何实施数字化转型(附PPT)

超详细280页Docker实战文档!开放下载

华为大数据解决方案(PPT)
2021数据治理与安全论坛(DataFunSummit 2021)PPT汇总,共30份。 一、数据治理论坛 业务数据治理在中台侧的实践分享 小米数据管理与应用实践 有赞数据地图实践 二、数据安全论坛 腾讯大数据安全体系介绍 企业数据安全中的数据脱敏 数字水印在数据泄漏溯源中的应用与挑战 三、隐私计算论坛 隐私安全计算平台翼数坊——落地应用实践 保护隐私的安全多方学习 安全多方计算中两方计算的性能分析 异构加速赋能联邦学习 基于百度数据联邦平台的安全数据处理 基于隐私保护计算的医学研究应用 个性化联邦学习助力AI在药物研发中的应用 大数据隐私计算:PowerFL-SQL联合分析技术及应用 四、电商行业论坛 京东数据安全的审计和防护 阿里巴巴数据治理实践 京东实时数仓治理与实战 京东海量数据快速更新实践 京东大数据安全与分布式权限体系的探索与实践 五、内容行业论坛 快看漫画构建数据治理闭环的逻辑与实践 数据安全基础框架与实践 云音乐数据治理探索与实践 百度用户产品大数据治理应用实践 百度广告场景大数据治理应用实践 六、金融行业论坛 360数科在线业务系统安全存储实践 金融科技时代下的数据安全治理 东方证券金融大数据服务转型的探索与实践 360数科大数据治理与应用 数据治理一体化在Mobtech金融风控场景下的实践
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值