矩阵与算子广义逆-第一章—表示线性方程组解的广义逆

第一次在网上写博客,以前我学习数学或者计算机,都是将知识一笔一笔的写在笔记本子上,看到大家都把学习的心得写在博客上面。我也学着写写,顺便可以分享自己的学习心得,供大家一起勉励。

两年前跟着一个教授学习过王国荣老师的《矩阵与算子广义逆》。后来因各种原因,没有继续研究下去。现在打算重新开始学习,而且计划将来就研究广义逆这个方向了。我读研究生期间是学习有限群论的,当时研究的也很深了。现在换到广义逆,希望忘记能像当年学习有限群论一样,把广义逆学习好。我后面也计划写一个有限群的文章,很是怀念当年学习的有限群知识。好了,废话不多说,开始第一章的学习了。

我计划按照总结知识,然后把课后习题做出来的方略进行,因为我当年学好有限群,就是做了大量的题目。所以我建议大家要想学好这些理论的数学知识,一定不要光是对着书本看,要多做一些题目,最好一道一道的做出来,可以查阅资料。

C^{n}为复n维向量空间,C^{m\times n}为复m\times n阶矩阵的全体,C_{r}^{m\times n}=\left \{ {​{X\in C^{m\times n},}}rank X = r \right \},R(A)=\left \{ y\in C^m;y=Ax,x\in C^n \right \}A的值域。


1.1 A^+的定义和基本性质

定义1.1 A \in C^{m \times n},则满足Penrose条件:

(1)AXA=A    (2)XAX=X

(3) (AX)^*=AX   (4) (XA)^*=XA

的矩阵X \in C^{m \times n}称为AM-P逆,记作X=A^+.

A^*A的共轭转置。

定理1.1 满足Penrose条件(1)-(4)的广义逆X是存在而且唯一的。

定理1.2A \in C^{m \times n}则:

(1){(A^+)}^+=A;

(2){(\lambda A)}^+=\lambda ^+A^+, \lambda \in C,\lambda ^+=\begin{Bmatrix} 1/\lambda,\lambda\neq 0\\0,\lambda=0 \end{Bmatrix}

(3){(A^*)^+}={(A^+)}^*

(4){(AA^*)^+}={(A^*)^+}A^+;{(A^*A)^+}=A^+{(A^*)^+}

(5)A^+={(A^*A)^+}A^*=A^*{(AA^*)^+}

(6)A^*=A^*AA^+=A^+AA^*

(7)rankA=n时,A^+A=I_n,rankA=m时,AA^+=I_m

(8){(UAV)^+}=V^*A^+U^*,这里UV为酉阵。

1.2 矩阵的值域和零空间

定义1.2 设A \in C^{m \times n},定义A的值域R(A)和零空间N(A)为:

R(A)=\left \{ y\in C^m;y=Ax,x\in C^n \right \}

N(A) = \left \{ {​{x \in C^n;Ax=0}} \right \}

可以证明:

R(A)^\perp =N(A^*)

这里R(A)^\perp表示R(A)的正交补子空间。

定理1.3 (值域和零空间的基本性质)

(1)R(A)=R(AA^+)=R(AA^*)

(2)R(A^+)=R(A^*)=R(A^+A)=R(A^*A)

(3)R(I-AA^+)=N(A^+A)=N(A)=R(A^*)^\perp(这个地方不太对,前面要改成R(I-A^+A)

(4)R(I-A^+A)=N(AA^+)=N(A^+)=N(A^*)=R(A)^\perp(这个地方也不太对,前面要改成R(I-AA^+))

(5)R(AB)=R(A)\Leftrightarrow rank(AB)=rank(A)

(6)N(AB)=N(B) \Leftrightarrow rank(AB)=rank(B)

下列关于秩的性质也经常用到:

引理1.1  设A \in C^{m \times n},则:

(1)rankA =rankA^+=rank(A^+A)=rank(AA^+)

(2)设E_A=I_m-AA^+.F_A=I_n-A^+A,则,

rankA=m-rankE_A,rankA=n-rankF_A

(3)rank(AA^*)=rank(A)=rank(A^*A)

1.3 满秩分解

定理1.4 设A\in C_{r}^{m \times n},r>0,则存在列满秩矩阵F \in C_{r}^{m \times n}和行满秩矩阵G\in C_{r}^{m \times n},使得:

A = F \cdot G

利用A的满秩分解可以导出M-P逆A^+的一个显式公式

定理1.5 设A\in C_{r}^{m \times n},r>0,有满秩分解A = F \cdot G,则:

A^+ = G^*(F^*AG^*)^{-1}F^* = G^*(GG^*)^{-1}(F^*F)^{-1}F^*

1.4 不相容线性方程组的极小范数最小二乘解与M-P逆

x=(x_1,x_2,....,x_n)^T \in C^p,,2-范数定义为:\left | \left | x \right | \right |_2=(\sum_{i=1}^{p}\left | x_i \right |^2)^{1/2}=(x^*x)^{1/2},简记为\left | \left | x \right | \right |

不相容线性方程组:Ax = b (A \in C^{m \times n},b \in R(A))        (*)

定义1.3  设A \in C^{m \times n},b \in C^m,向量u \in C^n称为(*)的最小二成解,如果\left |\left |Au-b\right | \right |\leqslant \left |\left |Av-b \right |\right |对一切v \in C^n成立。

定义1.4 设A \in C^{m \times n},b \in C^m,向量u \in C^n称为(*)的极小范数最小二乘解,如果u是(*)的最小二乘解,且\left |\left |u \right | \right|< \left |\left |w \right | \right|对一切其他最小二乘解w成立。

下面的定理给出了(*)的极小范数最小二乘解与M-P逆的关系。

定理1.6 设A \in C^{m \times n},b \in C^m,则A^+b是(*)的极小范数最小二乘解。

定理1.7 设A \in C^{m \times n},b \in C^m,则下列命题等价:

(1)uAx=b的最小二乘解;

(2)uAx=AA^+b的解;

(3)uA^*Ax=A^*b的解;

(4)u=A^+b+h,对某个h \in N(A)

**以上就是第一节的主要内容。下面开始做习题1.**

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值