Prime算法与Kruskal算法构造最小生成树的过程
-
问题
Prim算法,它是从点的方面考虑构建一颗MST(Minimum Spanning Tree,最小生成树),大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。 -
解析
-
设计
[核心伪代码]
int Prime()
{
vis[1] = 1; //将顶点1标记为已连通
for( i from 2 to N){
vis[i] = 0; //其他顶点标记为未连通
dis[i] = mp[i][1]; //将点i与顶点1的权值赋值给disi
}
for( i from 1 to N-1){
for(j from 1 to N){
找到最小权值边且端点未连通,记下pos;
}
vis[pos] = 1;//将该点标记为已连通;
sum+=dis[pos];//累加权值
for(遍历所有点){
if(!vis[j] && dis[j] > mp[pos][j] && mp[pos][j] != inf){
//如果该店未连通且与pos位置更近
则更新dis
dis[j] = mp[pos][j];
}
}
}
}