codeforces 1144D(思维)

87 篇文章 1 订阅
20 篇文章 1 订阅

题意描述

You are given an array a consisting of n integers. You can perform the following operations arbitrary number of times (possibly, zero):

Choose a pair of indices (i,j) such that |i−j|=1 (indices i and j are adjacent) and set ai:=ai+|ai−aj|;
Choose a pair of indices (i,j) such that |i−j|=1 (indices i and j are adjacent) and set ai:=ai−|ai−aj|.
The value |x| means the absolute value of x. For example, |4|=4, |−3|=3.

Your task is to find the minimum number of operations required to obtain the array of equal elements and print the order of operations to do it.

It is guaranteed that you always can obtain the array of equal elements using such operations.

Note that after each operation each element of the current array should not exceed 1018 by absolute value.

每次进行两种操作,求将数组中的一个数变成所有数的最小次数

思路

我们发现两个操作一定能使两个相邻的数相同,所以我们找出众数,然后从左到右,从右到左遍历一遍即可。如果比众数小则需要进行第二个操作,否则进行第一个操作。

AC代码

#include<bits/stdc++.h>
#define x first
#define y second
#define PB push_back
#define mst(x,a) memset(x,a,sizeof(x))
#define all(a) begin(a),end(a)
#define rep(x,l,u) for(ll x=l;x<u;x++)
#define rrep(x,l,u) for(ll x=l;x>=u;x--)
#define IOS ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<long,long> PLL;
typedef pair<char,char> PCC;
typedef long long ll;
const int N=2*1e5+10;
const int M=1e6+10;
const int INF=0x3f3f3f3f;
const int MOD=1e9+7;
int a[N];
void solve(){
    map<int,int> mp;
    int n;cin>>n;
    rep(i,1,n+1){
        cin>>a[i];
        mp[a[i]]++;
    }
    int MAX=-1,max_val;
    for(auto m : mp){
        if(m.y>MAX){
            MAX=m.y;
            max_val=m.x;
        }
    }
    if(MAX==n) cout<<0<<endl;
    else{
        cout<<n-MAX<<endl;
        int idx=0;
        rep(i,1,n+1){
            if(a[i]==max_val){
                idx=i;
                break;
            }
        }
        rrep(i,idx,1){
            if(a[i]<max_val) cout<<1<<' '<<i<<' '<<i+1<<endl;
            if(a[i]>max_val) cout<<2<<' '<<i<<' '<<i+1<<endl;
        }
        rep(i,idx,n+1){
            if(a[i]>max_val) cout<<2<<' '<<i<<' '<<i-1<<endl;
            if(a[i]<max_val) cout<<1<<' '<<i<<' '<<i-1<<endl;
        }
    }
}
int main(){
    IOS;
    solve();
    return 0;
}

CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值