机器学习:朴素贝叶斯和Logistic回归

朴素贝叶斯(基于概率论的分类方法)

朴素贝叶斯
优点:在数据输入较少的情况下仍然有效,可以处理多类别问题
缺点:对于输入数据的准备方式较为敏感
使用数据类型:标称型数据

关于朴素贝叶斯名词的解释
我们称之为“朴素”,因为整个形式化过程只做最原始,最简单的假设,贝叶斯决策理论的核心思想就是选择具有最高概率的决策。
在这里插入图片描述
我们先就只有两个特征值的情况进行说明:
如果p(B1 | A)>p(B2 | A),那么属于类别B1;
如果p(B1 | A)<p(B2 | A),那么属于类别B2。
因此只需要计算比较二者的分子部分即可(因为分母部分相等)

1.准备数据

词表到向量的转化

 1 # 词表到向量的转化
 2 from numpy import *
 3 import re
 4 import random
 5 
 6 def loadDataSet(): #创建样例数据
 7     postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
 8                    ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
 9                    ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
10                    ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
11                    ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
12                    ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
13     classVec = [0, 1, 0, 1, 0, 1]  #1代表脏话
14     return postingList, classVec
15 
16 def createVocabList(dataSet):  #创建词库 这里就是直接把所有词去重后,当作词库
17     vocabSet = set([])
18     for document in dataSet:
19         vocabSet = vocabSet | set(document)
20     return list(vocabSet)
21 
22 def setOfWords2Vec(vocabList, inputSet):  #文本词向量。词库中每个词当作一个特征,文本中就该词,该词特征就是1,没有就是0
23     returnVec = [0] * len(vocabList)
24     for word in inputSet:
25         if word in vocabList:
26             returnVec[vocabList.index(word)] = 1
27         else:
28             print("the word: %s is not in my Vocabulary!" % word)
29     return returnVec

分析:第一个函数loadDataSet()创建了一个实验样本。该函数返回的第一个变量是进行词条切分后的文档集合,第二个变量是一个类别标签集合。具体文本处理细节:
需要split函数:split函数
第二个函数是为了创建一个样本图库,以便于对输入数据进行分析
第三个函数则是将各个长短不一的随机训练样本转化为长度格式一致的向量模式。

2.训练算法

从词向量计算概率

30 #这里计算的概率是有关不同类别的一些特征出现的概率大小,所以说是相对固定的,可以应用到判断新输入信息的类别程序中
31 #这段程序应用了很多误差等消法(没错,你没看错,是等消),因为最终的目的是比较大小,而不是具体的数值
32 def trainNB0(trainMatrix, trainCategory):
33     numTrainDocs = len(trainMatrix)
34     numWords = len(trainMatrix[0])
35     pAbusive = sum(trainCategory) / float(numTrainDocs)
36     p0Num = ones(numWords) #防止某个类别计算出的概率为0,导致最后相乘都为0,所以初始词都赋值1,分母赋值为2.
37     p1Num = ones(numWords)
38     p0Denom = 2
39     p1Denom = 2
40     for i in range(numTrainDocs):
41         if trainCategory[i] == 1:
42             p1Num += trainMatrix[i]
43             p1Denom += sum(trainMatrix[i])
44         else:
45             p0Num += trainMatrix[i]
46             p0Denom += sum(trainMatrix[i])
47     p1Vect = log(p1Num / p1Denom)  #这里使用了Log函数,方便计算,因为最后是比较大小,所有对结果没有影响。
48     p0Vect = log(p0Num / p0Denom)
49     return p0Vect, p1Vect, pAbusive
根据现实情况修改分类器
50 #vec2Classify是要分类的向量
51 def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #比较概率大小进行判断,
52     p1 = sum(vec2Classify*p1Vec)+log(pClass1)
53     p0 = sum(vec2Classify*p0Vec)+log(1-pClass1)
54     if p1>p0:
55         return 1
56     else:
57         return 0
58 
59 def testingNB():
60     listOPosts,listClasses = loadDataSet()
61     myVocabList = createVocabList(listOPosts)
62     trainMat=[]
63     for postinDoc in listOPosts:
64         trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
65     p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
66     testEntry = ['love', 'my', 'dalmation'] # 测试数据
67     thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
68     print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
69     testEntry = ['stupid', 'garbage'] # 测试数据
70     thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
71     print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
72 
73 if __name__=='__main__':
74     testingNB()

Logistic回归

Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数
拟合、插值和逼近是数值分析的三大工具
回归:对一直公式的位置参数进行估计
拟合:把平面上的一些系列点,用一条光滑曲线连接起来
logistic主要思想:根据现有数据对分类边界线建立回归公式、以此进行分类
sigmoid函数:在神经网络中它是所谓的激励函数。当输入大于0时,输出趋向于1,输入小于0时,输出趋向0,输入为0时,输出为0.

梯度上升:要找到某个函数的最大值,最好的方法是沿着该函数的梯度方向探寻
收敛:随着迭代的运行算法的结果和真实结果的误差越来越小,且趋向于一个固定值。
爬山算法:是完完全全的贪心算法,每次鼠目寸光的选择一个当前最优解,英雌只能搜寻到局部最优值
模拟退火算法:也是一种贪心算法但它的sou索过程引入了随机因素,模拟退火算法以一定的概念来接受一个比当前解要差的解,因此有可能会跳出这个局部最优解,达到全局最优解。
处理数据中的缺失值:

使用可用特征的均值来填补缺失值
使用特殊值来填补缺失值,如-1
忽略有缺失值的样本
使用相似样本的均值添补缺失值
使用其它机器学习算法预测缺失值
标签与特征不同,很难确定采用某个合适的值来替换。

from numpy import *
import math
  
def loadDataSet():
  dataMat = []; labelMat = []
  fr = open('testSet.txt')
  for line in fr.readlines():
    lineArr = line.strip().split()
    dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
    labelMat.append(int(lineArr[2]))
  return dataMat,labelMat
  
def sigmoid(inX):
  return longfloat(1.0/(1+exp(-inX))) #sigmoid函数公式
  
def gradAscent(dataMatIn, classLabels):
  #dataMatIn 一个2维的数组;classLabels 类别标签
  dataMatrix = mat(dataMatIn)       #转换为矩阵
  labelMat = mat(classLabels).transpose() #得到矩阵的转置矩阵
  m,n = shape(dataMatrix)  #读取矩阵的长度,二维矩阵,返回两个值
  alpha = 0.001     #向目标移动的步长
  maxCycles = 500    #迭代次数 
  weights = ones((n,1))  #ones()函数用以创建指定形状和类型的数组,默认情况下返回的类型是float64。但是,如果使用ones()函数时指定了数据类型,那么返回的就是该类型
  for k in range(maxCycles):       
    h = sigmoid(dataMatrix*weights)   #matrix mult
    error = (labelMat - h)       #vector subtraction
    weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
  return weights
  
def plotBestFit(weights):
  import matplotlib as mpl
  mpl.use('Agg')         #为了防止出现:RuntimeError: could not open display报错
  import matplotlib.pyplot as plt
  dataMat,labelMat=loadDataSet()
  dataArr = array(dataMat)
  n = shape(dataArr)[0] 
  xcord1 = []; ycord1 = []
  xcord2 = []; ycord2 = []
  for i in range(n):
    if int(labelMat[i])== 1:
      xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
    else:
      xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
  fig = plt.figure() #figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
  ax = fig.add_subplot(111) # 参数111的意思是:将画布分割成1行1列,图像画在从左到右从上到下的第1块,
  ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
  ax.scatter(xcord2, ycord2, s=30, c='green')
  x = arange(-3.0, 3.0, 0.1)
  y = (-weights[0]-weights[1]*x)/weights[2]
  ax.plot(x, y)
  plt.xlabel('X1'); plt.ylabel('X2');
  plt.savefig('plotBestFit.png')  #因为我是腾讯云服务器,没有图形界面,所以我保存为图片。
  
#随机梯度上升算法
def stocGradAscent0(dataMatrix, classLabels):
  m,n = shape(dataMatrix)
  alpha = 0.01
  weights = ones(n)  #initialize to all ones
  for i in range(m):
    h = sigmoid(sum(dataMatrix[i]*weights))
    error = classLabels[i] - h
    weights = weights + alpha * error * dataMatrix[i] #回归系数的更新操作
  return weights
  
#改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):  #较之前的增加了一个迭代次数作为第三个参数,默认值150
  m,n = shape(dataMatrix)
  weights = ones(n)  
  for j in range(numIter):
    dataIndex = range(m)
    for i in range(m):
      alpha = 4/(1.0+j+i)+0.0001 
      randIndex = int(random.uniform(0,len(dataIndex)))  #样本随机选择
      h = sigmoid(sum(dataMatrix[randIndex]*weights))
      error = classLabels[randIndex] - h
      weights = weights + alpha * error * dataMatrix[randIndex] #回归系数的更新操作
      del(dataIndex[randIndex])
  return weights
  
#以回归系数和特征向量作为输入计算对应的sigmoid值
def classifyVector(inX, weights):
  prob = sigmoid(sum(inX*weights))
  if prob > 0.5: return 1.0        #如果sigmoid值大于0.5函数返回1,否则返回0
  else: return 0.0
  
#打开测试集和训练集,并对数据进行格式化处理的函数
def colicTest():
  frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
  trainingSet = []; trainingLabels = []
  for line in frTrain.readlines():
    currLine = line.strip().split('\t')
    lineArr =[]
    for i in range(21):
      lineArr.append(float(currLine[i]))
    trainingSet.append(lineArr)
    trainingLabels.append(float(currLine[21]))
  trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) #计算回归系数向量
  errorCount = 0; numTestVec = 0.0
  for line in frTest.readlines():
    numTestVec += 1.0
    currLine = line.strip().split('\t')
    lineArr =[]
    for i in range(21):
      lineArr.append(float(currLine[i]))
    if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
      errorCount += 1
  errorRate = (float(errorCount)/numTestVec)
  print "the error rate of this test is: %f" % errorRate
  return errorRate
#调用函数colicTest()10次,并求结果的平均值
def multiTest():
  numTests = 10; errorSum=0.0
  for k in range(numTests):
    errorSum += colicTest()
  print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
(1) 加载Scikit-learn自带的白酒数据集: ```python from sklearn.datasets import load_wine wine = load_wine() ``` (2) 获取数据集的特征 X 和标签 Y ,并打印 X 和 Y 的大小: ```python X = wine.data Y = wine.target print('X size:', X.shape) print('Y size:', Y.shape) ``` (3) 将数据集划分为训练集和测试集,并打印训练集和测试集的大小: ```python from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=42) print('X_train size:', X_train.shape) print('X_test size:', X_test.shape) print('Y_train size:', Y_train.shape) print('Y_test size:', Y_test.shape) ``` (4) 选择数据集的两个特征,绘制数据集散点图(scatter): ```python import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1], c=Y) plt.xlabel('Feature 0') plt.ylabel('Feature 1') plt.show() ``` 于上述加载拆分后的白酒数据集使用对数几率回归(Logistic Regression)进行分类,评估结果,并打印混淆矩阵(confusion matrix)和分类报告(classification report): (1) 初始化对数几率回归模型,使用训练集进行拟合: ```python from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, Y_train) ``` (2) 使用测试集测试分类精度,预测测试数据,并打印结果: ```python from sklearn.metrics import accuracy_score Y_pred = lr.predict(X_test) print('Accuracy:', accuracy_score(Y_test, Y_pred)) ``` (3) 打印分类报告: ```python from sklearn.metrics import classification_report print(classification_report(Y_test, Y_pred)) ``` (4) 打印混淆矩阵: ```python from sklearn.metrics import confusion_matrix print(confusion_matrix(Y_test, Y_pred)) ``` 于自酒数据集,使用朴素贝叶斯方法编程实现如下功能: (1) 分别使用高斯朴素贝叶斯和多项式朴素贝叶斯训练数据: ```python from sklearn.naive_bayes import GaussianNB, MultinomialNB gnb = GaussianNB() mnb = MultinomialNB() gnb.fit(X_train, Y_train) mnb.fit(X_train, Y_train) ``` (2) 打印两个朴素贝叶斯的测试精度: ```python print('GaussianNB accuracy:', gnb.score(X_test, Y_test)) print('MultinomialNB accuracy:', mnb.score(X_test, Y_test)) ``` (3) 定义分层划分(n_splits=50, test_size=0.2),利用学习曲线函数(learning curve)计算两个方法的测试集大小、训练精度和测试精度,并打印: ```python from sklearn.model_selection import learning_curve train_sizes, train_scores_gnb, test_scores_gnb = learning_curve(GaussianNB(), X, Y, cv=50, train_sizes=np.linspace(0.1, 1.0, 5)) train_sizes, train_scores_mnb, test_scores_mnb = learning_curve(MultinomialNB(), X, Y, cv=50, train_sizes=np.linspace(0.1, 1.0, 5)) print('GaussianNB train_sizes:', train_sizes) print('GaussianNB train_scores:', np.mean(train_scores_gnb, axis=1)) print('GaussianNB test_scores:', np.mean(test_scores_gnb, axis=1)) print('MultinomialNB train_sizes:', train_sizes) print('MultinomialNB train_scores:', np.mean(train_scores_mnb, axis=1)) print('MultinomialNB test_scores:', np.mean(test_scores_mnb, axis=1)) ``` (4) 分别绘制两种朴素贝叶斯方法的学习曲线: ```python plt.plot(train_sizes, np.mean(train_scores_gnb, axis=1), 'o-', color='r', label='GaussianNB training score') plt.plot(train_sizes, np.mean(test_scores_gnb, axis=1), 'o-', color='g', label='GaussianNB test score') plt.plot(train_sizes, np.mean(train_scores_mnb, axis=1), 'o-', color='b', label='MultinomialNB training score') plt.plot(train_sizes, np.mean(test_scores_mnb, axis=1), 'o-', color='y', label='MultinomialNB test score') plt.xlabel('Training examples') plt.ylabel('Score') plt.legend(loc='best') plt.show() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值