数据预处理
编程小小白白
这个作者很懒,什么都没留下…
展开
-
数据预处理
数据聚类并可视化 二维坐标可视化 import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl mpl.rcParams['font.family'] = 'sans-serif'#sans-serif就能保证调用 mpl.rcParams['font.sans-serif'] = 'NSimSun,Times New Roman'#设置字体 x, y = np.loadtxt('E:\人工智能\样题数据\第二原创 2020-11-28 18:28:01 · 229 阅读 · 0 评论 -
数据预处理
数据预处理 让数据适应匹配模型 数据类型不同–文字、数字、时间序列 数据质量不行–噪声、异常、缺失、数据出错、量纲不一、重复、数据是偏态、数据量太大太小 特征工程 降低计算成本、提升模型上限 特征之间的相关性 特征和标签无关 特征太多太小、无法表现应有数据现象无法展示数据真实面貌 sklearn Dimensionality reduction(降维) Preprocessing(预处理) 模块preprocessing几乎包含数据预处理所有内容 模块Impute填补缺失值专用 模块featur原创 2020-11-03 23:06:19 · 2721 阅读 · 0 评论