- 博客(32)
- 收藏
- 关注
原创 三、NVIDIA Jetson Orin开发板-GPU加速
在‘/etc/systemd/system/’下创建‘SVDD-Python-master.service’服务文件。2.3、安装依赖库OpenBLAS(它是一个高性能的线性代数库,pytorch依赖他进行数值计算)Ubuntu操作系统安装在一个NVMe固态硬盘(/dev/nvme0n1p1)上。1.4 检验cuda版本,显示版本信息即安装成功。3、创建‘systemd’服务单元文件。确保项目目录及其文件的所有权和权限正确。2、创建启动脚本‘run.sh’4、设置文件权限和所有权。2、pytorch安装。
2024-05-24 23:16:36 959
原创 二、anaconda虚拟环境包安装
没有显示已经安装的包,目前不知道是什么问题,我打开pycharm中终端,出现。可能与这个问题相关,于是尝试在命令行终端手动一个一个安装,可以!切换pip镜像源(有时候conda缺少包,可以换pip安装)但是我安装的过程遇到问题,虽然日志显示安装成功,但是。在虚拟环境下安装github项目中依赖包(
2024-05-17 22:07:47 378
原创 一、ubuntu系统初始配置
系统语言设置:https://cn.linux-console.net/?将English拖拽到最顶端 重启即可,注意重启后弹出是否将目录更改,选择是,这样终端的桌面就会恢复为desktop。文件夹中可能存在中文目录残余,可将其中的内容移动到对应的英文文件夹,删除即可。4.1 由于开始我不知道开发板的系统导致乱七八糟安装了java环境,java环境与pycharm需要适配。注意:在系统设置部分键盘输入源中可能找不到中文输入法,到桌面右上角语言设置部分可设置。4.3配置chatgpt。
2024-05-16 20:12:48 871
原创 Word为图表设置图注并在图表清单中自动生成
这是没有设置多级列表的提示,一般在题注标号设置完成点击确定时出现:具体步骤:首先,将同类别(需要设置相同格式的内容例如一级标题、正文部分)强制设置一下样式,方便后面实时更新,尤其是正文部分,插入的图注表注可能会采用题注的样式,与正文一般都不相符,但后期只需修改一下正文样式的格式,可自动全局更新。![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e0483def589d4ad2a80317c723c68459.png其余三级标题同理设置。一般来说,图表只
2024-03-19 17:16:45 1436
原创 8-pytorch-损失函数与反向传播
b站小土堆pytorch教程学习笔记根据loss更新模型参数1.计算实际输出与目标之间的差距2.为我们更新输出提供一定的依据(反向传播)
2024-02-22 16:26:13 521
原创 5-pytorch-DataLoader使用
dataset (Dataset) – dataset from which to load the data.参数需要自定义,其他参数都有默认值。接下来用tensorboard来展示加载的图片集,设置batch_size=64。num_workers=0:多进程,0表示主进程加载。drop_last=False:不整除的数据是否舍去。其中batch_size=4每次取出4张图片。b站小土堆pytorch教程学习笔记。batch_size:每次抓拍抓两张。当设置drop_last=True。
2024-02-16 15:03:43 372
原创 高排放源检测研究-笔记
基于边界的单类支持向量机通过寻找最小化的超平面或超球,将样本数据尽量的包含在超球中,通过超平面或超球判断测试数据是否属于正常类。基于密度的单类支持向量机通过估计样本数据的概率密度,再根据设定的阈值来判断样本是否属于正常类。是:通过非线性变换把数据映射到高维的特征空间,然后在特征空间中,把原点作为异常点,求出训练样本与原点最大间隔的超平面。常见的有基于边界的单类支持向量机和基于密度的单类支持向量机。高排预测为高排 的为 True positive(TP)—— 真阳。即负样本被预测为正样本占总的负样本的比例。
2024-02-08 00:36:10 927
原创 知识蒸馏原理
多模型集成能提升模型性能:将很多弱学习器集成为强学习器训练时每一个模型都会耗费大量算力,同时,部署笨重、算法高昂将集成模型压缩到单个模型即容易部署进一步提出知识蒸馏,将重度商业语音识别模型蒸馏新的模型集成范式:训练一个通才模型和许多专才模型,专才模型用于对细粒度类别进行分类。
2023-07-17 16:52:39 127
原创 torchtext Filed 方法报错解决办法
torchtext Filed 方法报错解决办法问题1 拿到的源代码是这样的报错:AttributeError: module ‘torchtext.data’ has no attribute ‘Field’解决:在torchtext0.9环境下,会报AttributeError: module ‘torchtext.data’ has no attribute ‘Field’新的API调用代码如下(示例):import torchimport torchtextfrom torc
2022-02-13 17:58:59 835
原创 7-CNN—— Convolutional Neural Network
CNN—— Convolutional Neural NetworkCNN是为影像设计的。一、Image Classfication每一个neural对于每一个像素点都有一个weight。Observation 1某个neural看到鸟的眼睛,某个neural看到鸟的爪子,综合起来,机器判断这是一只鸟。对于看到这只鸟的眼睛特征的神经元,没有必要对所有的像素点进行查看。因此,某些neural只需要将一小部分图片作为输入即可。Simplification 1在cnn中,设定一个recept
2021-12-07 14:51:06 279
原创 7-CNN—— Convolutional Neural Network
CNN—— Convolutional Neural NetworkCNN是为影像设计的。一、Image Classfication每一个neural对于每一个像素点都有一个weight。Observation 1某个neural看到鸟的眼睛,某个neural看到鸟的爪子,综合起来,机器判断这是一只鸟。对于看到这只鸟的眼睛特征的神经元,没有必要对所有的像素点进行查看。因此,某些neural只需要将一小部分图片作为输入即可。Simplification 1在cnn中,设定一个recept
2021-12-07 14:47:27 327
原创 4-Learning rate自动调整学习率
Adaptive Learning Rate一、问题描述当分析训练的loss已经不会随着gradient的更新而变化时,不一定就是local minima或者saddle point,分析norm of gradient ,发现在loss几乎不变的时候,gradient 还在保持着较大幅度的更新,很有可能是走到了左边的峡谷,gradient在两边跳跃,却始终不会降低loss。学习率过大,就会出现上一张ppt所示的情形,在峡谷两侧摆动;学习率过小,在峡谷的腰部位置,表现得会不错,慢慢移动到谷底,但是
2021-12-02 17:31:36 1240
原创 为什么Optimization会失败(一)?
when gradient is small…一、为什么Optimization会失败?1.1 local minima 局部最小值1.2 saddle point 鞍点一个不是局部最小值的驻点(一阶导数为0的点)称为鞍点。沿着马脊背方向是稳定的,是极小值,但沿着左右方向,是极大值。例如,函数y=x^3就有一个鞍点在原点,在鞍点的一次导数等于零,二次导数换正负符号。在微分方程中,指沿着某一方向是稳定的另一条方向是不稳定的奇点。在泛函中,指既不是极大值点也不是极小值点的临界点。在矩阵中,一个
2021-11-26 17:12:03 1013
原创 anaconda jupyter pytorch GPU问题记录
困扰我两天的问题终于在各大博主的指导下解决,差点就去叨扰师父了…安装坑在虚拟环境中安装pytorch GPU版本,创建好环境以后,一定要切换到该环境再安装GPU版本,否则1.会在base环境中出现一个cpu(之前安装的)torch,和一个GPU torch,会导致kernel python3.7无法正常import torch(报错没记下来,脑壳痛),原本是可以引入cpu版本的。好像是因为两者不能在同一环境共存,需要卸载其中一个。#开启和关闭虚拟环境的命令conda activate pyto
2021-11-23 20:08:38 2608 1
原创 机器学习任务攻略
机器学习任务攻略1. 出现误差的原因1.1 model biasThe model is too simple.Solution:redesign your model to make it more flexible.1.2 optimization issue局部最优解从Testing data上来看,56层的表现不如20层,不是过拟合。检查一下训练资料上的结果,20层和56层对比,56层弹性应该比20层的大,但是表现的却不好,不是模型偏差,而是56层的optimization没有
2021-11-22 16:05:56 1005
原创 machine learning to deep learning
machine learning 基本概念二接上linear models are too simple…we need more sophisticated models.Model Bias:来自model的限制,模型偏差一、function with unknown1.线性——>红色折线如何表示all piecewise linear curves(分段线性曲线) =constant +sum of a set of blue curve. More pieces requ
2021-11-21 18:54:21 725
原创 李宏毅machine learning概念笔记(一)
machine learning~looking for function1.机器学习的一些例子:Speech Recognition语音识别Image Recognition图像识别Playing Go2.Different types of function任务Regressionthe function outputs a scalar.输出为数值ClassificationGiven option(classes), the function outputs the correc
2021-11-20 19:42:56 374
原创 基于区块链的安全车联网数字取证系统SVDF
论文笔记论文来自Chinese Journal on Internet of Things 第 4 卷第 2 期2020年6月基于区块链的安全车联网数字取证系统SVDF车联网——汽车移动物联网技术:车与车、车与路、车与传感设备等交互。由车辆位置、速度和路线等信息构成巨大交互网络。通过各种装置,车辆可以完成自身环境和状态信息的采集。由互联网将自身的各种信息传输汇聚到中央处理器。通过计算机技术,这些大量车辆的信息可以被分析和处理,从而计算出不同车辆的最佳路线,及时汇报路况和安排信号灯周期。远程操控车门
2021-11-10 11:52:21 17831 1
原创 kafka生产者消费者实验
kafka实现生产消费数据一个月前跑通,现在给老师检查又出现各种问题,之前也遇到过,就因为不勤快…1.cluster ID的问题这个路径下面D:\kafka\kafka_2.13-2.6.0\logs有个meta.properties文件 打开之后按照报错提示,用前面那一串ID值替换掉这个文件的2.另一个程序在使用这个文件打开kafka配置文件server.properties查找到logs的位置,回来将它删除,不用担心有问题,因为下次跑起来的时候会自己生成3.整个流程按照网上流程复现一下
2020-12-15 01:55:19 769
原创 数据预处理
数据聚类并可视化二维坐标可视化import matplotlib.pyplot as pltimport numpy as npimport matplotlib as mpl mpl.rcParams['font.family'] = 'sans-serif'#sans-serif就能保证调用mpl.rcParams['font.sans-serif'] = 'NSimSun,Times New Roman'#设置字体 x, y = np.loadtxt('E:\人工智能\样题数据\第二
2020-11-28 18:28:01 229
原创 数据预处理
数据预处理让数据适应匹配模型数据类型不同–文字、数字、时间序列数据质量不行–噪声、异常、缺失、数据出错、量纲不一、重复、数据是偏态、数据量太大太小特征工程降低计算成本、提升模型上限特征之间的相关性特征和标签无关特征太多太小、无法表现应有数据现象无法展示数据真实面貌sklearnDimensionality reduction(降维)Preprocessing(预处理)模块preprocessing几乎包含数据预处理所有内容模块Impute填补缺失值专用模块featur
2020-11-03 23:06:19 2721
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人