[Tools]2.PIL的基本用法

2.PIL的基本用法

一、PIL中Image的基本用法

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt


class PILUsing:

    def __init__(self, path):
        pass

    def show_Image_Size(self, image):
        """
        查看图片的大小
        :param image: 图片
        :return: 返回图片的w和h的元组
        """
        return image.size


if __name__ == '__main__':
    path = r"./01.jpg"
    img = Image.open(path)  # 使图片处于可读的模式,这里的操作和文件的操作是一样的,是文件处于一个可读的模式
    # print(img)              # 输出图片的对象的信息,相当于Java中的toString()的内容
    # img.show()            # 这里展示的图片不会被压缩

    ' 查看图像的尺寸'
    w, h = img.size
    # print((w, h))           # (1800, 1200)
    # plt.imshow(img)         # 把图片放到plt中显示,这里图片会被压缩
    # plt.show()              # 利用plt显示图片

    '图像转换numpy'
    a = np.array(img)       # 转换成numpy数组的形式
    print(a.shape)          # 查看array的形状,这里就是图片的原始whc的形状
    print(a.size)           # 计算的个数

    'numpy数组转换成图像'
    image = Image.fromarray(a)  # 从数组中转换为Image对象
    print(image)                # 输出图像的信息,只不过,这里面的信息经过上面的转换之后有所丢失
    image.show()                # 展示图片

    '返回像素直方图,统计每个像素值出现的次数'
    his = img.histogram()       # 返回像素直方图
    print(his)                  # 打印出现的像素值的次数
    print(len(his))             # 输出使用的像素值的个数
    plt.hist(his)               # 放入到plt中进行条形图的统计
    plt.show()                  # 显示

    '查看指定坐标位置的像素点的RGB值,返回的是一个元组'
    pixes = img.getpixel((120, 80)) # 得到固定位置的像素值元组
    print(pixes)                    # 输出

    '使用切片的方法裁剪图片'
    print(np.array(img)[100:600, 500:1000, :])  # HWC 进行切片
    img2 = Image.fromarray(np.array(img)[100:600, 500:1000, :])
    # img2.show()
    plt.imshow(img2)
    plt.xticks([])                # 隐藏x坐标轴
    plt.yticks([])                # 隐藏y坐标轴
    plt.axis('off')                 # 隐藏坐标轴,与上面的用法是一样的
    plt.show()

    '使用Image中裁剪工具裁剪图片'
    img2 = img.crop((400, 500, 1000, 1000))
    # # img2.show()
    plt.imshow(img2)
    plt.show()

    '按指定大小缩放图片'
    x = img.resize((100, 100))
    x = img.resize((int(w / 2), int(h / 2)))    # 注意这里面必须是整数
    # x.show()
    plt.imshow(x)
    plt.show()

    'thumbnail 按最大边等比例缩放,没有返回值'
    img.thumbnail((1000, 800))
    plt.imshow(img)
    plt.show()

    '将一张图片按指定位置粘贴到另一张图片上'
    img02 = Image.open("02.jpg")
    img.paste(img02, (10, 10))
    plt.imshow(img)
    plt.axis('off')
    plt.show()

    '保存图片'
    img.save("03.jpg")

    '生成一张空白图片'
    image = Image.new("RGB", (100, 100), (0, 0, 0))
    image.show()

二、Image、ImageFilter、ImageDraw、ImageFont的基本使用(结合plt)

from PIL import Image, ImageFilter, ImageDraw, ImageFont
import matplotlib.pyplot as plt


image = Image.open("./01.jpg")

'加入模糊'
img1 = image.filter(ImageFilter.BLUR)       # 模糊
img2 = image.filter(ImageFilter.DETAIL)     # 增强饱和度
img3 = image.filter(ImageFilter.CONTOUR)    # 轮廓,类似于素描的效果
img4 = image.filter(ImageFilter.EMBOSS)     # 浮雕
# plt.subplot(2, 2, 1)
# plt.imshow(img1)
# plt.subplot(2, 2, 2)
# plt.imshow(img2)
# plt.subplot(2, 2, 3)
# plt.imshow(img3)
# plt.subplot(2, 2, 4)
# plt.imshow(img4)
# plt.axis('off')
# plt.show()
# img3.show()

'ImageDraw的使用'
draw = ImageDraw.Draw(image)        # 创建画板对象,将图片放入其中,这里的画板和plt不同的就是没有界面
draw.point(xy=(200, 300), fill="red")
# plt.imshow(image)
# plt.show()
# image.show()
draw.line(xy=(300, 300, 1000, 1000), fill='blue', width=3)  # 注意画板中的填充是要填完整的颜色名称,不能使用简写
draw.rectangle((30, 50, 80, 100), fill="blue", outline="red", width=4)
draw.rectangle((60, 80, 180, 200), outline="red", width=4)
draw.rectangle((100, 100, 400, 400), outline="red",width=4)
draw.ellipse((100, 100, 400, 400), fill="red", outline="yellow", width=4) # 画椭/圆:矩形左上角,右下角
draw.rectangle((400, 400, 700, 900), outline="red", width=4)
draw.arc((400, 400, 700, 900), start=0, end=270, fill="blue", width=4)     # 画圆弧:矩形左上角,右下角,顺时针
draw.chord((400, 400, 700, 900), start=0, end=180, outline="red", width=4) # 画和弦:矩形左上角,右下角,顺时针

font_path = "../msyh.ttc"
font = ImageFont.truetype(font_path, size=20)
draw.text(xy=(30, 60), text="这是中文字符", fill="red", font=font)
plt.imshow(image)
plt.show()
# image.show()

三、PIL总结

  1. PIL中工具包用在打开图片,后面dataset中
  2. 可以进行数据增强,如:加入模糊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值