OpenCL+OpenCV使用环境配置

在VS2012中,搭建了OpenCL+OpenCV的工作环境,检测了本地PC对OpenCL的支持情况,并做了简单验证。对刚刚接触OpenCL+OpenCV的朋友有一定的帮助。

2017-05-09 08:16:00

阅读数 4598

评论数 1

Python图像处理库PIL的基本模块介绍

PIL有如下几个模块:Image模块、ImageChops模块、ImageCrackCode模块、ImageDraw模块、ImageEnhance模块、ImageFile模块、ImageFileIO模块、ImageFilter模块、ImageFont模块、ImageGrab模块、ImageOps模...

2016-02-11 21:40:07

阅读数 11449

评论数 0

Android camera子系统HAL层介绍集锦

Android官网上对camera子系统HAL层进行了详细的介绍,其官方网址如下: https://source.android.com/devices/camera/index.html 在这个网址上,android官方从九个方面对camera子系统HAL的接口做了详细描述。对这些网址的内容,...

2015-12-12 13:24:01

阅读数 1372

评论数 0

android camera HAL v3.0概述

Android的camera硬件抽象层(HAL)将更高层次的android.hardware.Camera中的camera框架层API与底层的camera驱动和camera硬件模块连接了起来。Android最新版本介绍了camera栈的一个新的、底层的实现。如果你有一个以前开发的camera HA...

2015-12-01 12:27:07

阅读数 4764

评论数 0

写程序学ML:Logistic回归算法原理及实现(三)

利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。

2017-10-25 08:27:45

阅读数 2237

评论数 0

写程序学ML:Logistic回归算法原理及实现(二)

利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。

2017-10-25 08:14:03

阅读数 2214

评论数 0

写程序学ML:Logistic回归算法原理及实现(一)

利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。此处的回归公式例如sigmoid函数、reLU函数等。找到最佳的分类回归系数,建立这些函数后,然后利用函数对新的样本数据进行分类。

2017-10-25 08:04:15

阅读数 3092

评论数 0

写程序学ML:朴素贝叶斯算法原理及实现(三)

对于分类而言,使用概率有时要比使用硬规则更为有效。贝叶斯概率及贝叶斯准则提供了一种利用已知值来估计未知概率的有效方法。

2017-10-01 21:39:00

阅读数 2311

评论数 0

写程序学ML:朴素贝叶斯算法原理及实现(二)

按照朴素贝叶斯算法的原理,我们需要实现一个朴素贝叶斯分类器。首先,需要使用文本样例对贝叶斯分类器进行训练。

2017-10-01 21:31:12

阅读数 2161

评论数 0

写程序学ML:朴素贝叶斯算法原理及实现(一)

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

2017-10-01 21:26:58

阅读数 2779

评论数 0

写程序学ML:决策树算法原理及实现(四)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:23:38

阅读数 2109

评论数 0

写程序学ML:决策树算法原理及实现(三)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:16:19

阅读数 2007

评论数 0

写程序学ML:决策树算法原理及实现(二)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 19:03:16

阅读数 2086

评论数 0

写程序学ML:决策树算法原理及实现(一)

决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

2017-09-24 17:52:15

阅读数 2529

评论数 0

写程序学ML:K近邻(KNN)算法原理及实现(二)

K近邻算法是分类数据最简单最有效的算法,这里通过三个例子讲述了如何使用K近邻算法构造分类器。K近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。K近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时...

2017-09-14 08:02:59

阅读数 7088

评论数 0

写程序学ML:K近邻(KNN)算法原理及实现(一)

K近邻(k-NearestNeighbor,KNN)算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

2017-09-13 07:38:30

阅读数 3234

评论数 1

《OpenCL异构并行计算:原理、机制与优化实践》笔记(二):进入OpenCL的世界(矢量加法)

《OpenCL异构并行计算:原理、机制与优化实践》笔记(二):进入OpenCL的世界(矢量加法)

2017-07-13 22:46:45

阅读数 2553

评论数 0

《OpenCL异构并行计算:原理、机制与优化实践》笔记(一):OpenCL简介

《OpenCL异构并行计算:原理、机制与优化实践》笔记(一):OpenCL简介。

2017-07-13 22:36:07

阅读数 2516

评论数 0

使用OpenCL+OpenCV实现图像卷积(三)

基于VS2010,使用OpenCL+OpenCV实现图像旋转功能。

2017-06-08 08:05:45

阅读数 2443

评论数 1

使用OpenCL+OpenCV实现图像卷积(二)

基于VS2010,使用OpenCL+OpenCV实现图像卷积处理。

2017-06-08 07:59:34

阅读数 4399

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭