自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 第R3周:天气预测

位置影响下雨,对于 Portland 来说,有 36% 的时间在下雨,而对于 Woomers 来说,只有6%的时间在下雨。低压与高湿度会增加第二天下雨的概率,尤其是下午 3 点的空气湿度。结论:当一天的最高气温和最低气温接近时,第二天下雨的概率会增加。如果今天不下雨,那么明天下雨的机会 = 15%如果今天下雨明天下雨的机会 = 46%

2024-06-08 01:55:27 364

原创 第R2周:LSTM-火灾温度预测

h_0 = torch.randn(1, x.size(0), 64) #num_layers * num_directions(单向/双向), bs,hidden_size#c_0 = torch.randn(1, x.size(0), 64) #num_layers * num_directions(单向/双向), bs,hidden_size#如果不传入h0和c0,pytorch会将其初始化为0。

2024-05-31 20:08:33 821

原创 第R1周:RNN-心脏病预测

网络定义self.fc1 = nn.Linear(13, 64) # 输入特征数为13,输出特征数为64self.fc2 = nn.Linear(64, 2) # 输出特征数为2,对应2个类别return x# 损失函数和优化器# 记录训练过程中的损失和准确率# 训练模型# 记录训练损失# 计算训练集准确率# 测试模型# 计算测试集准确率这周不做CNN系列了,因为不研究CV方向。

2024-05-24 17:12:27 368 1

原创 DSTET模型代码解读

Transformer network with decoupled spatial–temporal embedding for traffic flow forecasting

2024-05-23 16:48:02 1844 1

原创 第J4周:ResNet与DenseNet

训练循环size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签# 计算预测误差pred = model(X) # 网络输出。

2024-05-17 20:58:44 413

原创 第J3周:DenseNet算法实战与解析

size = len(dataloader.dataset) # 测试集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)# 当不进行训练时,停止梯度更新,节省计算内存消耗# 计算loss这周学习了DenseNet算法模型,效果相较于上周的ResNet50V2有了显著的提升。

2024-05-03 21:21:04 1732 1

原创 第J2周:ResNet50v2算法实战与解析

size = len(dataloader.dataset) # 测试集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)# 当不进行训练时,停止梯度更新,节省计算内存消耗# 计算loss本周手敲了ResNetV2算法,之前的模型框架没有发生改变,只是将模型方法进行了一个优化修改。残差块结构的简化: ResNetV2对残差块(Residual Block)的设计进行了简化。

2024-04-26 19:29:32 680 1

原创 第J1周:ResNet-50算法实战与解析

size = len(dataloader.dataset) # 测试集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)# 当不进行训练时,停止梯度更新,节省计算内存消耗# 计算loss。

2024-04-19 13:43:01 1209 1

原创 第P10周:Pytorch实现车牌识别

本周在模型方面没有什么新的东西,新东西主要是对中文数据的embedding,通过一个交通领域的案例去认识cnn模型,正好与课题组做目标检测的方向是一致的,数据维度方面使用了増维的方式,第一个维度置为-1以自动适应维度大小,在训练营中第一次出现,但在本人交通流预测领域已经十分常见了。

2024-04-12 18:35:46 835

原创 第P9周:YOLOv5-Backbone模块实现

本周学习了YOLOv5的backbone模块,backbone模块是CSPDarknet53,它是一种改进的Darknet架构,结合了Cross Stage Partial连接和深度可分离卷积。具有以下特点点CSP结构:CSPDarknet53采用Cross Stage Partial连接结构,将输入特征图分为两部分,一部分直接进行卷积操作,另一部分经过残差连接后再与前一部分相加,这种结构可以有效减少参数量和计算量。

2024-03-29 14:31:29 491 1

原创 第P8周YOLOv5-C3模块实现

本周学习了YOLOv5模型的C3模块,由于本人专业研究方向不是这一方向,所以做的时候咨询了同课题组做目标检测的同学。YOLOv5主要由input:输入、Backbone:New CSP-Darknet53、Neck:SPFF和New CSP-PAN、Head(prediction):Yolov3 head极大模块组成,他的基本原理还是基于CNN的。其中backbone的作用是提取特征的。通过一系列的卷积层和池化层对输入图像进行处理,逐渐降低特征图的尺寸同时增加通道数。

2024-03-22 13:34:10 345 1

原创 第P7周:咖啡豆识别(VGG-16复现)

本周学习了VGG-16模型的手动实现,通过动手复现更加理解了该模型的底层原理,也对我的专业方向有了一个新的启发,可以将交通流数据的图看做文章中图片的格式,将其transform,最后的分类问题转换成回归问题。

2024-03-15 11:00:01 357 1

原创 第P6周:VGG-16实现人脸识别

1.本周学习了vgg16模型的使用,在模型调用过程中,下载时由于服务器在海外,下载速度仅为3kb/s,因此这里需要使用一些魔法去上网。在学习绿的设置中,如果将初始学习率设置为1e-3,模型效果会有很大的提升,在最开始使用1e-4时,单个图片预测结果并不是安吉丽娜朱莉,调整完成之后才是,并且我使用的环境,需要在程序开头加一行os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"否则在生成图片是jupyter会内核崩溃哦,具体原因不详,也是看过很多博客,一个一个方法试验的。

2024-02-23 15:08:19 944

原创 第P5周:运动鞋识别

本周学的新东西在于动态学习率,还对之前的有关CNN的内容重新系统的学习了一遍。有关学习率方面的知识,学习率过大,在算法优化的前期会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,甚至出现损失函数的值围绕最小值徘徊,波动很大,始终难以达到最优。所以引入学习率衰减的概念,直白点说,就是在模型训练初期,会使用较大的学习率进行模型优化,随着迭代次数增加,学习率会逐渐进行减小,保证模型在训练后期不会有太大的波动,从而更加接近最优解。

2024-01-19 21:10:08 791

原创 第P4周:猴痘病识别

本周在之前的学习基础上,加入了指定图片的分类,和模型的加载与保存。在torch.unsqueeze(input, dim)函数方面学习以下方面函数调用形式:torch.unsqueeze(input, dim) → Tensor功能: 在指定位置 dim 插入一个大小为1的维度dim: 插入维度的位置。dim 范围为:[-input.dim() - 1, input.dim() + 1)。

2024-01-12 17:16:49 755 1

原创 第P3周:天气识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。,否则的话,有输入数据,即使不训练,它也会改变权值。

2024-01-05 16:28:20 884 1

原创 第P2周:CIFAR10彩色图片识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。,否则的话,有输入数据,即使不训练,它也会改变权值。

2023-12-22 15:26:01 870

原创 深度学习——第P1周:实现mnist手写数字识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用。,所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

2023-12-08 18:11:32 1484

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除