四边形网格

本文深入探讨了四边形网格的定义、分类及其在正向建模系统中的应用。对比三角形网格,四边形网格在特征边对齐、样条曲面定义、纹理贴图等方面具有优势,但也存在不共面、奇异点等问题。文章还介绍了生成高质量四边形网格的方法,包括Catmull-Clark细分、参数化和Morse-Smale complex方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接

四边形网格定义

  • 四边形网格,顾名思义,它的每个网格面片是一个四边形。有时候,四边形网格里会掺杂一些三角形面片,我们把这类网格也都叫做四边形网格。三角形网格常见于逆向建模领域,比如通过三维扫描仪扫描得到的网格。四边形网格常见于正向建模系统,如3dsMax,ZBrush等。这主要是因为点云或者三角形网格转成四边形网格有一定的难度,特别是高质量的四边形网格。
  • 正则点:内点-度数为4;边界点(非拐点(Corner))-度数为3;边界点(凸拐点)-度数为2;边界点(凹拐点)-度数为4
  • 分类:主要是根据顶点的正则度来进行分类。如下图所示,第一类网格为正则网格,所有顶点度数为4,只有特殊拓扑结构的网格能达到正则;第二类是半正则网格,它是分片正则的;第三类是度数半正则网格,它的顶点度数绝大部分是4;最后一类是无序的四边形网格,它有很多非正则点。
    quad_category

四边形网格的优缺点

与三角形网格相比,四边形网格有一些优点:

  • 特征边对齐:四边形网格的边可以很自然的与特征边进行对齐,边走向也可以很自然的与模型的几何特征走向对齐。
  • 样条曲面和细分曲面:样条曲面和Catmull-Clark细分曲面常见的定义域就是四边形
  • 纹理贴图:半正则的四边形网格,每个正则片可以很好的与图片对齐,有利于图片的采样精确性
    同时四边形网格也有一些缺点:
  • 四边形可能不共面

高质量的四边形网格

  • 奇异点个数尽量少,布局合理
  • 面片的边走向要与几何特征走向对齐
  • 边长尽量均匀化,或者自适应几何特征

生成四边形网格的方法

正向建模软件可以直接创建四边形网格。逆向建模的网格一般是三角形网格,需要方法把三角形网格转成四边形网格

  • Catmull-Clark细分三角形可以得到一个四边形网格,它的质量比较低,奇异点多,边走向不好。后续可以应用一些四边形网格优化的方法
  • 参数化方法
  • Morse-Smale complex 方法
  • 网格分割后,分片参数化的方法

四边形网格的处理

  • 网格简化
  • 几何优化
  • 高阶曲面拟合,细分曲面拟合
  • 网格拓扑优化

有兴趣的读者,欢迎参考视频版本

### 创建平行四边形网格的方法 #### 使用内置功能创建平行四边形网格 为了在Visio中创建平行四边形网格,可以通过加载项中的排列形状选项来实现。具体来说,在视图菜单下的加载项部分找到并运行相应的加载项[^1]。 ```python # Python伪代码示意流程控制逻辑而非实际Visio操作脚本 def create_parallelogram_grid(): view_menu = "视图" add_ons_submenu = "加载项" run_add_on_option = "运行加载项" select_shape_arrangement() ``` #### 绘制单个平行四边形单元并通过组合形成网络结构 另一种方法涉及手动绘制构成网格的基本单元——平行四边形。这通常始于利用直线工具构建四个顶点相连而成的闭合路径,随后通过右键菜单选择这些线段并将它们作为一个整体对象进行组合处理[^2]。 ```python # 同样作为概念说明用途 def draw_and_combine_shapes(): use_line_tool_to_draw_four_sides_of_a_parallelogram() right_click_select_all_lines_then_choose_grouping_from_contextual_menu() ``` #### 应用自动化布局调整多个图形位置关系 对于更复杂的场景,比如希望快速生成具有特定尺寸和平铺模式的大规模平行四边形阵列时,可以借助于“排列形状”的高级特性。先拖拽基础几何体至工作区,接着按照指导设定好行数、列数及其间隔参数,最后可能还需要做些细微的位置修正以达到理想效果[^3]。 #### 调整间距参数优化视觉呈现质量 当目标是让相邻两排之间的距离保持一致且紧密贴合时,可以在配置过程中给定负值作为行距输入,这样能够促使各行沿垂直方向紧凑排列。同时指定合适的水平与垂直中心间的固定距离有助于确保整个网格式样的规整美观度[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值