吴恩达机器学习笔记(三)线性回归问题

模型表示

这是我们第一个学习的算法,线性回归算法。这节我们就介绍一下这个算法的概况,以便于我们更加了

解监督学习过程完整的流程。

让我们先通过一个例子开始:
这个例子是预测住房价格,我们要使用一个数据集,数据集包括某一个市的住房价格。在这里,我们要

根据不同房屋尺寸所售出的价格,画出我们的数据集。比如如果你的朋友的房子是1250平方尺大小,

你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这

个数据模型上来看,也许你可以告诉你的朋友,他能以大约 220000(美元)左右的价格卖掉这个房子。

这就是监督学习算法的一个例子。
在这里插入图片描述
这个之所以被称为监督学习是因为对于每个数据来说,我们都给出了“正确的答案”,即告诉我们,根据

我们的房子大小来说,房子的实际价格是多少。而且,更具体的说,这是一个回归问题。

回归:我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格。

同时还有另外一种常见的监督学习的例子,叫做分类问题,当我们想要预测离散的输出值时,例如,

我们正在寻找一个 一个蛋蛋是好的还是坏的这就是0/1离散输出的问题。更进一步说,在监督学习中我

们有一个数据集,这个数据集被称为训练集(Training Set)。

在这里插入图片描述

我们将要用来描述这个回归问题的标记如下: 𝑚 代表训练集中实例的数量

𝑥 代表特征/输入变量

𝑦 代表目标变量/输出变量

(𝑥, 𝑦) 代表训练集中的实例

(𝑥(𝑖), 𝑦(𝑖)) 代表第𝑖 个观察实例

ℎ 代表学习算法的解决方案或函数也称为假设(hypothesis)

在这里插入图片描述
这就是一个监督学习算法的工作方式,,我们可以看到这里有我们的训练集里房屋价格我们把它送给

我们的学习算法,学习算法的工作了,然后输出一个函数,通常表示为小写 ℎ表示。ℎ 代表

hypothesis(假设),ℎ表示一个函数,输入是房屋尺寸大小,就像你朋友想出售的房屋,因此 ℎ 根据输

入的 𝑥值来得出 𝑦 值,𝑦 值对应房子的价格 因此,ℎ 是一个从𝑥 到 𝑦 的函数映射。

我将选择最初的使用规则ℎ代表 hypothesis,因而,要解决房价预测问题,我们实际上是要将训练集

“喂”给我们的学习算法,进而学习得到一个假设ℎ,然后将我们要预测的房屋的尺寸作为输入变量输入

给ℎ,预测出该房屋的交易价格作为输出变量输出为结果。那么,对于我们的房价预测问题,我们该如

何表达 ℎ?

一种可能的表达方式为:ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥,因为只含有一个特征/输入变量,因此这样的问

题叫作单变量线性回归问题。如果有多个变量,那我们的问题自然就可以推广到多变量线性回归,道

理都是一样的。

代价函数

首先介绍下什么是代价函数,这个东西贯穿机器学习中的很多东西,不想按照百度的内容进行讲解,

只说一下我自己的理解以及我所理解的他的作用:

代价函数就是用于找到最优解的目的函数,它的作用也是如此。

既然有了线性回归问题这个概念,我们就可以通过代价函数弄清楚如何找到一条最有可能的直线与我

们的数据相拟合。如图:

在这里插入图片描述
在线性回归中我们有这样一个训练集,m代表训练样本的数量,比如m=47。

而我们的假设函数,也就是预测的函数,是这样的线性函数形式:ℎ𝜃(𝑥) = 𝜃0 + 𝜃1x.

我们现在要做的就是要为我们模型选择合适的参数:θ0和θ1,在房价问题这个例子中便是直线的

斜率和在y轴上的截距。

选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际

值之间的差距(下图中蓝线所指)就是建模误差(modeling error)。
在这里插入图片描述
我们的目标就是找到合适的参数,使得所选择的直线与我们的数据最拟合。

即使得代价函数最在这里插入图片描述

最小。

我们可以绘制一个等高线图(可以理解为将高度相等的线连接起来成一个平面),

三个坐标分别为𝜃0和𝜃1 和𝐽(𝜃0, 𝜃1):

在这里插入图片描述
该图是不是特别显而易见的可以看出一个使得 𝐽(𝜃0, 𝜃1) 最小的点。

代价函数也被称作平方误差函数,有时也被称为平方误差代价函数。我们之所以要求出误差的平方

和,是因为误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。还有其他

的代价函数也能很好地发挥作用,但是平方误差代价函数可能是解决回归问题最常用的手段了。

代价函数的理解

下面讲一下如何更好地理解代价函数。

希望通过一些例子带来更直接的感受。看看代价函数长什么样、

在这里插入图片描述
代价函数的样子,在等高线图是下图的模样,则可以看出三维空间中存在一个使得J(θ0,θ1)最小的点。

在这里插入图片描述
将等高线图转化为二维图中则是上图第二个样子。代价函数最小的点就是两条蓝线交汇的点。

这些图形只是帮助我们更好地理解代价函数的具体情况,更好地理解这些代价函数J所表达的值是什么

样的,它们对应的假设是什么样的,以及什么样的假设对应的点,更接近于代价函数J的最小值。

我们真正需要的是一种有效的算法,能够自动找出使代价函数J取最小值的参数θ0和θ1来。

下一篇介绍找出该参数的算法----梯度下降。解决线性回归问题

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值