二分图性质:不含奇环的证明。

二分图性质:不含奇环。

证明:反证法。

假设存在一个奇环: v 1 , v 2 , v 3 … v 2 k − 1 , k ∈ N + v_1,v_2,v_3\dots v_{2k-1},k\in N^+ v1,v2,v3v2k1,kN+

任意相邻两点有边连接,且 v 1 , v 2 k − 1 v_1,v_{2k-1} v1,v2k1有一条边相邻。

假设 v 1 v_1 v1属于 V x V_x Vx集合,依次类推 v 2 ∈ V y , v 3 ∈ V x … v_2\in V_y,v_3\in V_x\dots v2Vy,v3Vx

可以知道编号为奇数的结点都属于 V x V_x Vx,编号为偶数的结点都属于 V y V_y Vy.

因为 v 1 , v 2 k − 1 v_1,v_{2k-1} v1,v2k1相连,且 v 1 , v 2 k − 1 v_1,v_{2k-1} v1,v2k1都属于 V x V_x Vx,与二分图相连结点属于不同点集的定义矛盾,所以即证二分图不含奇环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值