五角星中的余弦定理
解法如下
考虑正弦定理:
c b = s i n ∠ 1 s i n ∠ 2 \dfrac{c}{b}=\dfrac{sin\angle1}{sin\angle 2} bc=sin∠2sin∠1
同理可得:
e
d
=
s
i
n
∠
2
s
i
n
∠
3
\dfrac{e}{d}=\dfrac{sin\angle2}{sin\angle3}
de=sin∠3sin∠2
g f = s i n ∠ 3 s i n ∠ 4 \dfrac{g}{f}=\dfrac{sin\angle3}{sin\angle4} fg=sin∠4sin∠3
i h = s i n ∠ 4 s i n ∠ 5 \dfrac{i}{h}=\dfrac{sin\angle4}{sin\angle5} hi=sin∠5sin∠4
a j = s i n ∠ 5 s i n ∠ 1 \dfrac{a}{j}=\dfrac{sin\angle5}{sin\angle1} ja=sin∠1sin∠5
五个式子相乘:
a × c × e × g × i b × d × f × h × j = s i n ∠ 1 × s i n ∠ 2 × s i n ∠ 3 × s i n ∠ 4 × s i n ∠ 5 s i n ∠ 2 × s i n ∠ 3 × s i n ∠ 4 × s i n ∠ 5 × s i n ∠ 1 = 1 \dfrac{a\times c\times e\times g\times i}{b\times d\times f\times h\times j}=\dfrac{sin\angle1\times sin\angle2\times sin\angle3\times sin\angle4\times sin\angle5}{sin\angle2\times sin\angle3\times sin\angle4\times sin\angle5\times sin\angle1}=1 b×d×f×h×ja×c×e×g×i=sin∠2×sin∠3×sin∠4×sin∠5×sin∠1sin∠1×sin∠2×sin∠3×sin∠4×sin∠5=1
证毕。