五角星中的余弦定理

本文详细介绍了如何利用正弦定理推导出五角星中各边与内角的关系,并通过五个公式相乘证明了最终结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

五角星中的余弦定理

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-10b4K3KQ-1634721260201)(C:\Users\HeHao\AppData\Roaming\Typora\typora-user-images\image-20211020170723670.png)]

解法如下

在这里插入图片描述

考虑正弦定理:

c b = s i n ∠ 1 s i n ∠ 2 \dfrac{c}{b}=\dfrac{sin\angle1}{sin\angle 2} bc=sin2sin1

同理可得:
e d = s i n ∠ 2 s i n ∠ 3 \dfrac{e}{d}=\dfrac{sin\angle2}{sin\angle3} de=sin3sin2

g f = s i n ∠ 3 s i n ∠ 4 \dfrac{g}{f}=\dfrac{sin\angle3}{sin\angle4} fg=sin4sin3

i h = s i n ∠ 4 s i n ∠ 5 \dfrac{i}{h}=\dfrac{sin\angle4}{sin\angle5} hi=sin5sin4

a j = s i n ∠ 5 s i n ∠ 1 \dfrac{a}{j}=\dfrac{sin\angle5}{sin\angle1} ja=sin1sin5

五个式子相乘:

a × c × e × g × i b × d × f × h × j = s i n ∠ 1 × s i n ∠ 2 × s i n ∠ 3 × s i n ∠ 4 × s i n ∠ 5 s i n ∠ 2 × s i n ∠ 3 × s i n ∠ 4 × s i n ∠ 5 × s i n ∠ 1 = 1 \dfrac{a\times c\times e\times g\times i}{b\times d\times f\times h\times j}=\dfrac{sin\angle1\times sin\angle2\times sin\angle3\times sin\angle4\times sin\angle5}{sin\angle2\times sin\angle3\times sin\angle4\times sin\angle5\times sin\angle1}=1 b×d×f×h×ja×c×e×g×i=sin2×sin3×sin4×sin5×sin1sin1×sin2×sin3×sin4×sin5=1

证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值