ChatGLM-6B does not appear to have a file named config.json.

在使用ChatGLM-6B模型时遇到缺少config.json文件的错误,通过检查本地文件、重新下载模型或者验证文件大小与官网一致来解决问题。文章提供了代码调用示例及错误解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


ChatGLM-6B是一个由清华大学和智谱AI联合研发的开源对话语言模型。它是一个支持中英双语问答的对话系统,并在中文方面进行了特别的优化。
该模型基于General Language Model (GLM)架构,具有62亿参数。借助模型量化技术,用户可以在消费级的显卡上进行本地部署,INT4量化级别下最低只需6GB显存。ChatGLM-6B使用了和ChatGLM相同的技术,针对中文问答和对话进行了优化经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62亿参数的ChatGLM-6B已经能生成相当符合人类偏好的回答。
ChatGLM-6B是一个由清华大学和智谱AI联合研发的开源对话语言模型。它是一个支持中英双语问答的对话系统,并在中文方面进行了特别的优化。
该模型基于General Language Model (GLM)架构,具有62亿参数。借助模型量化技术,用户可以在消费级的显卡上进行本地部署,INT4量化级别下最低只需6GB显存。ChatGLM-6B使用了和ChatGLM相同的技术,针对中文问答和对话进行了优化经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62亿参数的ChatGLM-6B已经能生成相当符合人类偏好的回答。
总之,ChatGLM-6B在语言生成和对话方面表现出了非常出色的能力,可以广泛应用于人机交互、自然语言处理、智能客服等领域。

<

YOLOV8基于Opset-12导出的ONNX模型,使用TensorRT-8.2.1.8转换模型时,提示以下错误,请问如何修复这个错误?: [06/01/2023-17:17:23] [I] TensorRT version: 8.2.1 [06/01/2023-17:17:23] [I] [TRT] [MemUsageChange] Init CUDA: CPU +323, GPU +0, now: CPU 335, GPU 1027 (MiB) [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 335 MiB, GPU 1027 MiB [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 470 MiB, GPU 1058 MiB [06/01/2023-17:17:24] [I] Start parsing network model [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [I] [TRT] Input filename: /opt/projects/ultralytics/runs/detect/train/weights/best.onnx [06/01/2023-17:17:24] [I] [TRT] ONNX IR version: 0.0.8 [06/01/2023-17:17:24] [I] [TRT] Opset version: 17 [06/01/2023-17:17:24] [I] [TRT] Producer name: pytorch [06/01/2023-17:17:24] [I] [TRT] Producer version: 2.0.0 [06/01/2023-17:17:24] [I] [TRT] Domain: [06/01/2023-17:17:24] [I] [TRT] Model version: 0 [06/01/2023-17:17:24] [I] [TRT] Doc string: [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [W] [TRT] onnx2trt_utils.cpp:366: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32. [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:773: While parsing node number 267 [Range -> "/model.28/Range_output_0"]: [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:774: --- Begin node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:775: input: "/model.28/Constant_9_output_0" input: "/model.28/Cast_output_0" input: "/model.28/Constant_10_output_0" output: "/model.28/Range_output_0" name: "/model.28/Range" op_type: "Range" [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:776: --- End node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:3352 In function importRange: [8] Assertion failed: inputs.at(0).isInt32() && "For range operator with dynamic inputs, this version of TensorRT only supports INT32!" [06/01/2023-17:17:24] [E] Failed to parse onnx file [06/01/2023-17:17:24] [I] Finish parsing network model [06/01/2023-17:17:24] [E] Parsing model failed [06/01/2023-17:17:24] [E] Failed to create engine from model. [06/01/2023-17:17:24] [E] Engine set up failed
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝士高斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值