MySQL-事务-介绍与操作
:::info
- 场景:学工部整个部门解散了,该部门及部门下的员工都需要删除了?
- 问题:如果删除部门成功了,而删除该部门的员工时失败了,此时就造成了数据的不一致。
- 解决:需要用到事务来解决
:::
-- 删除学工部
delete from dept where id = 1; -- 删除成功
-- 删除学工部的员工
delete from emp where dept_id = 1; -- 删除失败(操作过程中出现错误:造成删除没有成功)
- 一个业务要发送多条SQL语句给数据库执行,需要将多次访问数据库的操作视为一个整体来执行。
- 事务:是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
- 事务作用:保证在一个事务中多次操作数据库表中数据时,要么全都成功,要么全都失败。
SQL语句 | 描述 |
---|---|
start transaction; / begin ; | 开启手动控制事务 |
commit; | 提交事务 |
rollback; | 回滚事务 |
MYSQL中有两种方式进行事务的操作:
- 自动提交事务:即执行一条sql语句提交一次事务。(默认MySQL的事务是自动提交)
- 手动提交事务:先开启,再提交
:::warning
手动提交事务使用步骤:
- 第1种情况:开启事务 => 执行SQL语句 => 成功 => 提交事务
- 第2种情况:开启事务 => 执行SQL语句 => 失败 => 回滚事务
:::
-- 开启事务
start transaction ;
-- 删除学工部
delete from tb_dept where id = 1;
-- 删除学工部的员工
delete from tb_emp where dept_id = 1;
- 上述的这组SQL语句,如果如果执行成功,则提交事务
-- 提交事务 (成功时执行)
commit ;
- 上述的这组SQL语句,如果如果执行失败,则回滚事务
-- 回滚事务 (出错时执行)
rollback ;
MySQL-事务-四大特性【重点】
- 原子性(Atomicity):事务是不可分割的最小单元,要么全部成功,要么全部失败。
- 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。
- 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。
- 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。
:::info
- 原子性(Atomicity) :原子性是指事务包装的一组sql是一个不可分割的工作单元,事务中的操作要么全部成功,要么全部失败。
- 一致性(Consistency):一个事务完成之后数据都必须处于一致性状态。
- 如果事务成功的完成,那么数据库的所有变化将生效。
- 如果事务执行出现错误,那么数据库的所有变化将会被回滚(撤销),返回到原始状态。
- 隔离性(Isolation):多个用户并发的访问数据库时,一个用户的事务不能被其他用户的事务干扰,多个并发的事务之间要相互隔离。
- 一个事务的成功或者失败对于其他的事务是没有影响。
- 持久性(Durability):一个事务一旦被提交或回滚,它对数据库的改变将是永久性的,哪怕数据库发生异常,重启之后数据亦然存在。
:::
MySQL-索引-介绍
- 索引(index):是帮助数据库高效获取数据的数据结构。
:::info
- 没有索引的查询流程:目标值 45,从头开始扫描,找到目标值后继续向下扫描完,第二次查找 45 ,依然时全盘扫描,效率慢。
- 有索引的查询流程:比如用二叉树(打个比方),左边的叶小于右边的叶子,这样就能快速判断位置,提高查询效率。(第二次查找仍然要从头遍历,只是快了)
:::
MySQL-索引-结构
:::info
-
MySQL数据库支持的索引结构有很多,如:Hash索引、B+Tree索引、Full-Text索引等。我们平常所说的索引,如果没有特别指明,都是指默认的B+Tree结构组织的索引。
:::
:::info -
存在问题:数据越大,层级越深,查询的速度会越慢。
:::
B+Tree
:::info
数据库中的索引结构B+树。
- 1、一个节点可以存储多个key值(n个key和n个指针)。
- 2、所有数据都储存在叶子节点,非叶子节点仅存索引数据。
- 3、叶子节点形成双向链表,方便数据排序和区间范围查找。
:::
注意点!!:根据范围选择方向,如果相邻,可以范围搜索,因为时双向链表。
:::info
拓展:
非叶子节点都是由key+指针域组成的,一个key占8字节,一个指针占6字节,而一个节点总共容量是16KB,那么可以计算出一个节点可以存储的元素个数:16*1024字节 / (8+6)=1170个元素。
- 查看mysql索引节点大小:show global status like ‘innodb_page_size’; – 节点大小:16384
当根节点中可以存储1170个元素,那么根据每个元素的地址值又会找到下面的子节点,每个子节点也会存储1170个元素,那么第二层即第二次IO的时候就会找到数据大概是:11701170=135W。也就是说B+Tree数据结构中只需要经历两次磁盘IO就可以找到135W条数据。
对于第二层每个元素有指针,那么会找到第三层,第三层由key+数据组成,假设key+数据总大小是1KB,而每个节点一共能存储16KB,所以一个第三层一个节点大概可以存储16个元素(即16条记录)。那么结合第二层每个元素通过指针域找到第三层的节点,第二层一共是135W个元素,那么第三层总元素大小就是:135W16结果就是2000W+的元素个数。
结合上述分析B+Tree有如下优点:
- 千万条数据,B+Tree可以控制在小于等于3的高度
- 所有的数据都存储在叶子节点上,并且底层已经实现了按照索引进行排序,还可以支持范围查询,叶子节点是一个双向链表,支持从小到大或者从大到小查找
:::
B-Tree
:::info
:::
MySQL-索引-操作语法
创建索引
create [ unique ] index 索引名 on 表名 (字段名,... ) ;
create index idx_emp_name on tb_emp(name);
查看索引
show index from 表名;
show index from tb_emp;
删除索引
drop index 索引名 on 表名;
drop index idx_emp_name on tb_emp;
:::info
注意事项:
- **主键字段,在建表时,会自动创建主键索引 **
- 添加唯一约束时,**数据库实际上会添加唯一索引 **
:::