AtCoder Beginner Contest 208 D-Shortest Path Queries 2(dp)

这篇博客讨论了一道关于有向带权图的最短路径问题。题目要求计算从每个节点出发,通过指定数量的节点到达所有其他节点的最短路径之和。博主首先尝试使用Dijkstra算法解决,但由于复杂度过高导致超时。接着,博主提出了状态转移方程,通过动态规划在O(n^3)的时间复杂度内求解。最终给出了C++代码实现,并输出了总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给出一个 n n n个点, m m m条边的有向带权图。定义 f ( s , t , k ) f(s,t,k) f(s,t,k)表示起点为 s s s,终点为 t t t,且途中只能经过 1 1 1 k k k k k k个点的最短路。

∑ s = 1 n ∑ t = 1 n ∑ k = 1 n f ( s , t , k ) \sum\limits_{s=1}^{n}\sum\limits_{t=1}^{n}\sum\limits_{k=1}^{n}f(s,t,k) s=1nt=1nk=1nf(s,t,k)

题解:

一开始看到这题,没计算复杂度,直接想着暴力跑 d j dj dj求每个值,交上去 t l e tle tle后才发现复杂度不对。

其实不难发现,对于 f ( s , t , k ) f(s,t,k) f(s,t,k),如果 s s s t t t的最短路路并没有经过 k k k点,那么 f ( s , t , k ) = f ( s , t , k − 1 ) f(s,t,k)=f(s,t,k-1) f(s,t,k)=f(s,t,k1)

如果经过 k k k点,那么 f ( s , t , k ) = f ( s , k , k − 1 ) + f ( k , t , k − 1 ) f(s,t,k)=f(s,k,k-1)+f(k,t,k-1) f(s,t,k)=f(s,k,k1)+f(k,t,k1)

那么状态转移方程就出来了, f ( s , t , k ) = m i n ( f ( s , t , k − 1 ) , f ( s , k , k − 1 ) + f ( k , t , k − 1 ) ) f(s,t,k)=min(f(s,t,k-1),f(s,k,k-1)+f(k,t,k-1)) f(s,t,k)=min(f(s,t,k1),f(s,k,k1)+f(k,t,k1))

最后就是 O ( n 3 ) O(n^3) O(n3)复杂度的转移了。

代码:

#pragma GCC diagnostic error "-std=c++11"
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7;
const int MAXN=4e2+5;
const int inf=0x3f3f3f3f;
int vis[MAXN][MAXN];
ll dp[MAXN][MAXN][MAXN];
int main()
{
    
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            for(int k=0;k<=n;k++)
            {
                dp[i][j][k]=inf;
            }
        }
    }
    for(int i=1;i<=m;i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        vis[u][v]=w;
        dp[u][v][0]=w;
    }
    for(int i=1;i<=n;i++)
    {
        dp[i][i][0]=0;
    }
    ll ans=0;
    for(int k=1;k<=n;k++)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j][k]=min(dp[i][j][k-1],dp[i][k][k-1]+dp[k][j][k-1]);
                if(dp[i][j][k]<inf) ans+=dp[i][j][k];
                //cout<<i<<" "<<j<<" "<<k<<" "<<dp[i][j][k]<<endl;
            }
        }
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值