题意:
给出一个 n n n个点, m m m条边的有向带权图。定义 f ( s , t , k ) f(s,t,k) f(s,t,k)表示起点为 s s s,终点为 t t t,且途中只能经过 1 1 1到 k k k这 k k k个点的最短路。
求 ∑ s = 1 n ∑ t = 1 n ∑ k = 1 n f ( s , t , k ) \sum\limits_{s=1}^{n}\sum\limits_{t=1}^{n}\sum\limits_{k=1}^{n}f(s,t,k) s=1∑nt=1∑nk=1∑nf(s,t,k)
题解:
一开始看到这题,没计算复杂度,直接想着暴力跑 d j dj dj求每个值,交上去 t l e tle tle后才发现复杂度不对。
其实不难发现,对于 f ( s , t , k ) f(s,t,k) f(s,t,k),如果 s s s到 t t t的最短路路并没有经过 k k k点,那么 f ( s , t , k ) = f ( s , t , k − 1 ) f(s,t,k)=f(s,t,k-1) f(s,t,k)=f(s,t,k−1) 。
如果经过 k k k点,那么 f ( s , t , k ) = f ( s , k , k − 1 ) + f ( k , t , k − 1 ) f(s,t,k)=f(s,k,k-1)+f(k,t,k-1) f(s,t,k)=f(s,k,k−1)+f(k,t,k−1)。
那么状态转移方程就出来了, f ( s , t , k ) = m i n ( f ( s , t , k − 1 ) , f ( s , k , k − 1 ) + f ( k , t , k − 1 ) ) f(s,t,k)=min(f(s,t,k-1),f(s,k,k-1)+f(k,t,k-1)) f(s,t,k)=min(f(s,t,k−1),f(s,k,k−1)+f(k,t,k−1))。
最后就是 O ( n 3 ) O(n^3) O(n3)复杂度的转移了。
代码:
#pragma GCC diagnostic error "-std=c++11"
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7;
const int MAXN=4e2+5;
const int inf=0x3f3f3f3f;
int vis[MAXN][MAXN];
ll dp[MAXN][MAXN][MAXN];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=0;k<=n;k++)
{
dp[i][j][k]=inf;
}
}
}
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
vis[u][v]=w;
dp[u][v][0]=w;
}
for(int i=1;i<=n;i++)
{
dp[i][i][0]=0;
}
ll ans=0;
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
dp[i][j][k]=min(dp[i][j][k-1],dp[i][k][k-1]+dp[k][j][k-1]);
if(dp[i][j][k]<inf) ans+=dp[i][j][k];
//cout<<i<<" "<<j<<" "<<k<<" "<<dp[i][j][k]<<endl;
}
}
}
printf("%lld\n",ans);
}