前言:这道题考差了大家的思维想象能力,这道题的难点在于如何区分内圈0和外圈0,因为处在内圈周围上的1有可能在输入的二维数组的边界上,所以直接处理是不好处理的。
如下图(边界1在数组边界上的情况):
所以就要考虑如何设计出一个既可以区分内外零又可以不影响原数组的方法。
题解:
首先看一下这道题,我们一般都是直接去存数组的,所以一般不会去自己再扩展这个数组。那么正因为如此,如果我们去扩展一下这个数组的外围,那么就不会再出现1在边界上的情况了。所以见下图:
上面的是原图,而下面的则是扩展一圈的扩展图,而红色框部分则是我们需要修改和输出的部分。所以我们在便利的时候可以将扩展数组同时进行处理,这样不仅不会将原先的二维数组替换掉,而且还可以很好的解决这个问题,为主函数中的处理打下基础。
步骤:
1。对原先输入的数组进行扩充一圈的操作。
scanf("%d",&n);
memset(a,0,sizeof a);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
2.然后对其进行深度优先搜索,注意需要传的行和列的参数是(0,0),因为是要对扩充的数组进行搜索。
dfs(0,0);
3.深度优先搜索:对于每个外圈0都标记上-1,以便后续进行处理,注意:此时的题目边界是(0~n+1)而不是(1~n)。
int dx[]={0,1,0,-1,0};
int dy[]={0,0,1,0,-1};
void dfs(int x,int y){
a[x][y]=-1;
for(int i=1;i<=4;i++){
int zx=x+dx[i];
int zy=y+dy[i];
if(zx>=0&&zx<=n+1&&zy>=0&&zy<=n+1&&a[zx][zy]!=1&&a[zx][zy]!=-1){
dfs(zx,zy);
}
}
return ;
}
4.预处理数组,分为三种情况:
(1).当前的值为-1,说明是外圈0,输出0;
(2).当前的值为1,说明是1,输出1;
(3).当前的值为0,说明是内圈0,输出2。
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(a[i][j]==-1){
printf("0 ");
}
else if(a[i][j]==1){
printf("1 ");
}
else{
printf("2 ");
}
}
printf("\n");
}
AC CODE(全部):
#include<bits/stdc++.h>
using namespace std;
int n;
int a[105][105];
int dx[]={0,1,0,-1,0};
int dy[]={0,0,1,0,-1};
void dfs(int x,int y){
a[x][y]=-1;
for(int i=1;i<=4;i++){
int zx=x+dx[i];
int zy=y+dy[i];
if(zx>=0&&zx<=n+1&&zy>=0&&zy<=n+1&&a[zx][zy]!=1&&a[zx][zy]!=-1){
dfs(zx,zy);
}
}
return ;
}
int main(){
scanf("%d",&n);
memset(a,0,sizeof a);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
dfs(0,0);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(a[i][j]==-1){
printf("0 ");
}
else if(a[i][j]==1){
printf("1 ");
}
else{
printf("2 ");
}
}
printf("\n");
}
return 0;
}
/*
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0
*/
下面的注释部分是图2,(注释部分可以不删,不影响程序的运行结果)。