数学建模算法与应用习题 1.3
某厂生产三种产品Ⅰ,Ⅱ,Ⅲ。每种产品要经过A,B两道工序加工。设该厂有两种规格的设备能完成A工序,以A1,A2 表示;有三种规格的设备能完成B工序,以B1,B2,B3,表示。产品Ⅰ可在A,B任何一种规格设备上加工。产品Ⅱ可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品Ⅲ只能在A2与B2设备上加工。已知在各种机床设备的单件工时、原材料费、产品销售价格、各种设备有效台时以及满负荷操作时机床设备的费用如表1.2所列,试安排最优的生产计划,使该厂利润最大。
设备 | 产品Ⅰ | 产品Ⅱ | 产品Ⅲ | 设备有效台时 | 满负荷时的设备费用/元 |
---|---|---|---|---|---|
A1 | 5 | 10 | 6000 | 300 | |
A2 | 7 | 9 | 12 | 10000 | 321 |
B1 | 6 | 8 | 4000 | 250 | |
B2 | 4 | 11 | 7000 | 783 | |
B3 | 7 | 4000 | 200 | ||
原料费/(元/件) | 0.25 | 0.35 | 0.50 | ||
单价/(元/件) | 1.25 | 2.00 | 2.80 |
这里,我们可以设产品Ⅰ的A1、A2、B1、B2、B3参与生产的产品数量分别为x1、x2、x3、x4、x5。
设产品Ⅱ的A1、A2、B1参与生产的产品数量分别为x6、x7、x8。
设产品Ⅲ的A2、B2参与生产的产品数量分别为x9、x10。
根据利润公式——利润 = 单价 - 原料 - 设备费用,得出:
z = (1.25-0.25)(x1+x2)+(2 -0.35)x8+(2.8-0.5)x9
-(300/6000)(5x1+10x6) - (321/10000)(7x2+9x7+12x9)
-(250/4000)(6x3+8x8) - (783/7000)(4x4+11x10)
-(200/4000)7x5
可能公式不是很好理解
(单价-成本)*(产品数量)-(设备单位时间价格)*时间
这里的产品数量可以使用所有在A或者B加工的数量来表示,因为这个产品必须要经过A,B两道工序,所以说使用一个产品参与的所有的A或者B工序数量就可以。
整理后
有些朋友不知道利润系数是什么,自己把上面的利润公式化简后就知道了!
利润公式系数分别为 3/4,7753/10000,-3/8,-3132/7000,-7/20,-1/2,-2889/10000,1.15,19148/10000,-8613/7000。
下面是条件限制
5x1 + 10x6 ≤ 6000
7x2 + 9x7 + 12x9 ≤ 10000
6x3 + 8x8 ≤ 4000
4x4 + 11x10 ≤ 7000
7x5 ≤ 4000
x1 + x2 = x3 + x4 + x5,
x6 + x7 = x8
x9 = x10
x = 1:10
得出代码:
clc;clear;
c = [3/4,7753/10000,-3/8,-3132/7000,-7/20,-1/2,-2889/10000,1.15,19148/10000,-8613/7000];
A = [5,0,0,0,0,10,0,0,0,0;0,7,0,0,0,0,9,0,12,0;
0,0,6,0,0,0,0,8,0,0;0,0,0,4,0,0,0,0,0,11;
0,0,0,0,7,0,0,0,0,0];
b = [6000,10000,4000,7000,4000];
aeq = [1,1,-1,-1,-1,0,0,0,0,0;
0,0,0,0,0,1,1,-1,0,0;
0,0,0,0,0,0,0,0,1,-1];
beq = [0,0,0];
options = optimoptions('linprog','Algorithm','dual-simplex');
[x,y] = linprog(-c,A,b,aeq,beq,zeros(10,1),[],options);
fprintf('最优方案应该为:\n')
for i = 1:10
fprintf('x%d = %.5f\n',i,x(i));
end
fprintf('最大利润为%.5f元\n',-y);
输出为:
Optimal solution found.
最优方案应该为:
x1 = 1200.00000
x2 = 230.04926
x3 = 0.00000
x4 = 858.62069
x5 = 571.42857
x6 = 0.00000
x7 = 500.00000
x8 = 500.00000
x9 = 324.13793
x10 = 324.13793
最大利润为1146.56650元
同答案上Lingo程序的结果对比基本一致,又因为需要进行整数规划。这里我们对代码进行一下修改。
clc;clear;
c = [3/4,7753/10000,-3/8,-3132/7000,-7/20,-1/2,-2889/10000,1.15,19148/10000,-8613/7000];
A = [5,0,0,0,0,10,0,0,0,0;0,7,0,0,0,0,9,0,12,0;
0,0,6,0,0,0,0,8,0,0;0,0,0,4,0,0,0,0,0,11;
0,0,0,0,7,0,0,0,0,0];
b = [6000,10000,4000,7000,4000];
aeq = [1,1,-1,-1,-1,0,0,0,0,0;
0,0,0,0,0,1,1,-1,0,0;
0,0,0,0,0,0,0,0,1,-1];
beq = [0,0,0];
intcon = [1 2 3 4 5 6 7 8 9 10];
[x,y] = intlinprog(-c,intcon,A,b,aeq,beq,zeros(10,1),[]);
fprintf('最优方案应该为:\n')
for i = 1:10
fprintf('x%d = %.5f\n',i,x(i));
end
fprintf('最大利润为%.5f元\n',-y);
输出为:
最优方案应该为:
x1 = 1200.00000
x2 = 230.00000
x3 = 0.00000
x4 = 859.00000
x5 = 571.00000
x6 = 0.00000
x7 = 500.00000
x8 = 500.00000
x9 = 324.00000
x10 = 324.00000
最大利润为1146.41420元