Removet--SLAM动态障碍物滤除

Remove, then Revert: Static Point cloud Map Construction using Multiresolution Range Images

原文与代码:https://github.com/gisbi-kim/removert
阅读参考:https://blog.csdn.net/lovely_yoshino/article/details/135150906,博主:敢敢のwings,
写的很棒


摘要: 本文提出了一种新颖的静态点云地图构建算法,称为Removet,用于动态城市环境。仅留下静态点并排除动态对象是户外变化的各种鲁棒机器人任务中的关键问题,并且该过程通常包括将查询与具有动态点的噪声地图进行比较。然而,这样做时,查询扫描和噪声地图之间的估计差异往往会由于不完善的姿态估计而产生错误,这会降低静态地图质量。为了解决这个问题,本文提出了一种基于多分辨率范围图像的错误预测恢复算法。首先保守地保留确定的静态点,并通过扩大查询-地图关联窗口大小来迭代恢复更多不确定的静态点,这隐式地补偿了激光雷达运动或配准误差。使用 SemanticKITTI 作为基本事实在 KITTI 数据集上验证,并表明在模糊区域中定性地竞争或优于人类标记数据 (SemanticKITTI)。


重点构建仅包含环境中静态组件的 3D 点云地图。生成高质量的静态地图,不考虑处理速度。本文的解决方案是确定一个位置的纯静态元表示,该表示可以支持查询端的各种应用程序。


在本文中提出了两种机制来解决由于激光雷达运动模糊性导致的关联误差所引起的虚假动态点去除问题。第一种机制是删除和恢复算法。首先保守地保留静态点(见图 1 的中间)并恢复错误删除的点。该过程处理一批测量值,与顺序贝叶斯更新不同,它侧重于后处理作用,因为本文的主要目的是构造一定长度的静态图,并确保动态点被强烈擦除,即使出现一些误报发生(即实际的静态点被错误地删除)。因此,本文的算法首先批量删除点(除了固体静态点),然后以多个置信水平反转它们(详细信息见图4和图9)。其次,本文提供了一种使用多分辨率范围图像处理恢复置信度的机制。这具有查询和多个搜索窗口大小内的地图点之间隐式关联的效果,因此用户可以隐式指定可接受的LiDAR 运动模糊度级别并调整 LiDAR 运动模糊度的权衡(例如,精度和召回率之间)预测的静态地图的准确性。
在这里插入图片描述

  • 基于范围图像的地图点差异计算
  • 删除后恢复机制,用于构建和增强静态地图
  • 基于多分辨率范围图像的静态地图演化

方法

在这里插入图片描述
在这里插入图片描述

1、问题定义:给定一组原始雷达扫描构建的点云地图,其目标是删除原始地图中的动态点。将点云状态分为两种:静态和动态。静态状态为正(P),动态状态为负(N)。
在这里插入图片描述
其中 TP, FP, TN, 和 FN 分别表示 true positive(被正确判定为static的点), false positive(被错误判定为static的点), true negative(被正确判定为dynamic的点), and false negative(被错误判定为dynamic的点)的点云集合。问题可以重新被定义为:减少FP和FN 点云集合中元素的个数。
2、如果假设一个点总是属于静态或动态集,那么FN等于整个TP子集。

严格限制 P S M P^{SM} PSM的生成,即“宁可杀错不可错过”,以减少 FP 集合的元素个数;除了 P S M P^{SM} PSM,余下的点云就是 P D M P^{DM} PDM,再从一次次地从的 P D M P^{DM} PDM中检测出 FN 的点云,并将FN加入到 P S M P^{SM} PSM 。REMOVERT算法就是重复执行此过程并增强预测的 P S M P^{SM} PSM ,使其收敛得更接近true的 P S M P^{SM} PSM。简而言之,这种迭代static map增强策略是“ REMOVERT ”背后的核心。

3、pipeline图中的S ( k ) S(k)S(k)和D ( k ) D(k)D(k)分别表示在第k次迭代中主要由static points和dynamic points组成的点云“地图”,而图中框住S ( k ) S(k)S(k)和D ( k ) D(k)D(k)的方框大小则表达成点云“地图”的大小(size),由上图的pipeline可以看到在第一次remove的结果中dynamic point cloud的点云地图大小是其最大的时候,而对应着的static point cloud则是其最小的时候;随后进入第二个大阶段:迭代revert,每次都从dynamic point cloud的点云地图中找出一定大小static points并加入到之前的static point cloud中,经过整个阶段的revert,static point cloud会越来越大,对应的dynamic point cloud则越来越小。而最终的输出点云地图就是pipeline最终累加所得Static point cloud。

4、Range image-based map comparison:使用可见性来执行动态点辨别,检查投影范围图像平面内地图点的可见性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验

见论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值