综述 | 自动驾驶和SLAM中动态障碍物滤除方案综述

本文介绍了自动驾驶和SLAM中动态障碍物滤除的重要性及应用场景,探讨了动态障碍物对点云配准和地图构建的影响。在平面移动机器人和自动驾驶的不同需求下,提出了实时和离线的滤除方案,如基于点云分割、可见性和栅格的方法,并推荐了相关算法。强调动态障碍物滤除在提升定位精度和地图质量中的关键作用,以及在线实时滤除与离线处理的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:知乎博主Sky Shaw  | 来源:计算机视觉工坊

在公众号「3D视觉工坊」后台,回复「原论文」即可获取论文pdf和代码。

添加微信:dddvisiona,备注:自动驾驶,拉你入群。文末附行业细分群。

1、引言

在单次激光SLAM或者定位的过程中,动态障碍物(如:移动的车辆、行人等)会对SLAM或者定位造成两个方面的负面影响:点云配准 和 地图构建

针对点云配准,动态障碍物能造成最极端的情况是“当一帧激光数据中的大部分(甚至100%)点云都是从动态障碍物上返回的数据,那么该帧点云则没有能力在reference scan(或者reference map)中找到correspondent points,点云的配准就会失效,但在实际情况下,点云配准时的query scan数据中受到动态障碍物影响的点云个数是“有限的”,由此query scan中大多数的点云还是可以找到它们的correspondences,少数的异常量不会产生太大的干扰。另一方面,若是采用特征法进行点云配准,动态障碍物在预处理阶段也会被剔除,由此基于特征的配准方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值