作者:知乎博主Sky Shaw | 来源:计算机视觉工坊
在公众号「3D视觉工坊」后台,回复「原论文」即可获取论文pdf和代码。
添加微信:dddvisiona,备注:自动驾驶,拉你入群。文末附行业细分群。
1、引言
在单次激光SLAM或者定位的过程中,动态障碍物(如:移动的车辆、行人等)会对SLAM或者定位造成两个方面的负面影响:点云配准 和 地图构建
针对点云配准,动态障碍物能造成最极端的情况是“当一帧激光数据中的大部分(甚至100%)点云都是从动态障碍物上返回的数据,那么该帧点云则没有能力在reference scan(或者reference map)中找到correspondent points,点云的配准就会失效,但在实际情况下,点云配准时的query scan数据中受到动态障碍物影响的点云个数是“有限的”,由此query scan中大多数的点云还是可以找到它们的correspondences,少数的异常量不会产生太大的干扰。另一方面,若是采用特征法进行点云配准,动态障碍物在预处理阶段也会被剔除,由此基于特征的配准方