骑士巡游问题(递归+回溯)

8 篇文章 0 订阅

题目描述

输入 n ( 1< = n < = 10 ) 代表棋盘的规模就是 n*n 的规模,骑士永远从 (1,1) 出发,要求骑士走遍所有棋盘的格子
输出 骑士的走法(遍历棋盘的所有格子)

注意方向:

constintdx[8]={ -2,-2, -1, 1,2, 2, 1,-1};

constintdy[8]={ -1, 1, 2, 2,1,-1,-2,-2};

输入

输入 n ( 1< = n < = 10 ) 代表棋盘的规模就是 n*n 的规模,骑士永远从 (1,1) 出发,要求骑士走遍所有棋盘的格子

输出 骑士的走法(遍历棋盘的所有格子)

输出
只有唯一解

样例输入

5

样例输出

在这里插入图片描述

代码实现

#include<bits/stdc++.h>
using namespace std;
int n;
int a[20][20];
int dx[8] = {-2,-2,-1,1,2,2,1,-1};
int dy[8] = {-1,1,2,2,1,-1,-2,-2};
int flag = 0;
void dfs(int x,int y,int num)
{
	int x1,y1;
	if(num == n*n)  //递归出口条件
	{
		flag = 1;
		return;
	}
	for(int i = 0; i < 8; ++i)
	{
		x1 = x + dx[i];
		y1 = y + dy[i];
		if(x1>0&&x1<=n&&y1>0&&y1<=n&&!a[x1][y1])
		{
			num = num+1;
			a[x1][y1] = num;
			dfs(x1,y1,num);
			num = num-1;   //回溯,要将原来的恢复
			if(flag)
			return;
			a[x1][y1] = 0;
		}
		x1 = x - dx[i];
		y1 = y - dy[i];
	}
}
int main()
{
	cin >> n;
	a[1][1] = 1;
	dfs(1,1,1);
	for(int i = 1; i <= n; ++i)
	{
	for(int j = 1; j <= n; ++j)
	{
	cout << a[i][j];
	if(j < n)
	cout << " ";
    }
	cout << endl;
    }
	return 0;
 } 

思考

意如果此解不能走完全部的点,回溯时要一步步恢复原样,继续寻找该唯一解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值