1.FFT是一维傅里叶变换,即将时域信号转换为频域信号;
FFTSHIFT是针对频域信号的,将FFT的DC分量移到频谱中心,重新排列fft,fft2和fftn的输出结果。
2.fftshift,就是将左右两边的数据对换
例子:
x=[1 2 3 4]
fftshift(x)
结果如下图
3.IFFTSHIFT Inverse FFT shift.(就是fftshift的逆)
例子:
x=[1 2 3 4 5]
y=fftshift(x)
z=ifftshift(y)
结果:
4.直接用fft得出的数据与频率不是对应的,fftshift可以纠正过来
示例:
clear all;
clc;
fs=100;N=256; %采样频率和数据点数
n=0:N-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y1=fft(x,N); %对信号进行快速Fourier变换
y2=fftshift(y1);
mag1=abs(y1); %求得Fourier变换后的振幅
mag2=abs(y2);
f1=n*fs/N; %频率序列
f2=n*fs/N-fs/2;
subplot(3,1,1),plot(f1,mag1,'r'); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('图1:usual FFT','color','r');grid on;
subplot(3,1,2),plot(f2,mag1,'b'); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('图2:FFT without fftshift','color','b');grid on;
subplot(3,1,3),plot(f2,mag2,'c'); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('图3:FFT after fftshift','color','c');grid on;
结果:
5.结论
1)如果期望绘制的幅频图,频率范围为0~fs,则无需运行fftshift变换,如图1。
2)如果期望绘制的幅频图,频率范围为-fs/2~fs/2,则需要运行fftshift变换,如图3;
3)如果不运行fftshift变换,图示的响应频点会发生变换,如图2。