- 博客(501)
- 资源 (2)
- 收藏
- 关注
原创 分支限界法
定义节点结构体:每个节点包含当前的层次(表示考虑到第几个物品)、当前的重量、当前的价值以及一个界限值(用于剪枝)。计算界限值:对于每个节点,计算其可能达到的最大价值界限,若该界限小于当前已找到的最优价值,则剪去该分支。扩展节点:对于每个节点,考虑选择当前物品和不选择当前物品两种情况,将符合条件的新节点加入队列。使用队列:用队列来存储待扩展的节点,按照广度优先的方式进行搜索。
2025-04-10 10:23:48
128
原创 Python基础(13)--利用函数方法实现记账统计
3.求进货最多的箱数是哪个茶品,和最贵的原材料是哪个。1.对每天的购买的箱数的数量和金额进行统计。4.求总共进了多少箱,和总共花费了多少钱。2.对每种原材料的数量和金额进行累计。
2024-03-24 17:33:24
375
1
原创 matlab基础4--绘制统计图形条形图、柱状图、面积图、饼图、极坐标图、
绘制条形图时可以分为二维和三维的情况,其中绘制二维条形图的命令为bar(竖直条形图)与barh(水平条形图);绘制三维条形图的命令为bar3(竖直条形图)与bar3h(水平条形图),它们的调用格式是一样的。
2023-12-06 09:49:30
2352
原创 matlab基础3--图形标注
MATLAB的绘图函数可根据要绘制的曲线数据的范围自动的选择合适的坐标系,使得曲线尽可能清晰的显示出来。所以一般情况下用户不必自己选择绘图的坐标。但是有些图形,如果用户感觉坐标不合适,可以利用函数axis()选择新的坐标系。自动计算当前轴的范围,该命令也可针对某一个具体坐标轴使用,例如。auto yz:自动计算y轴与z轴的范围。auto x:自动计算x轴的范围;
2023-12-05 17:38:11
3346
原创 matlab基础2--二维绘图
在某次物理实验中测得摩擦系数不同的情况下路程与实践的数据见下表所示。在同一图中做出不同摩擦系数情况下路程随时间的变化曲线。s为单引号标记的字符串,用来标记所画数据点的类型、大小、颜色以及数据点之间连线的类型、粗细、颜色等。在同一幅图上画出y=sinx,y=sin(x+pi/4),y=sin(x-pi/4)这个函数的功能是绘制多条曲线、在这种方法中,(xi,yi)必须是成对出现的。
2023-12-05 10:54:10
412
原创 matlab基础1--向量
基本格式是x=first:increment:last,表示创建一个从first开始,到last结束,数据增量为increment的向量。若增量为1,上面创建向量的方式简写为x=first:last。向量的四则运算与一般数值的四则运算相同,相当于将向量中的元素拆开,分别进行加减四则运算,最后将运算结果重新组合成向量。对于向量a,b,其点积可以用a.*b得到,也可以直接用命令dot算出,命令调用格式如下表所示。在空间几何学忠,两个向量叉乘的结果是一个过两相交向量交点且垂直于两向量所在平面的向量。
2023-12-03 16:28:58
961
原创 22.matplotlib共享个别子区绘图区域的坐标轴
文章目录1.设置方法2.用函数autoscale()调整坐标轴范围1.设置方法import matplotlib.pyplot as pltimport matplotlib as mplimport numpy as npx1 = np.linspace(0,2*np.pi,400)y1 = np.cos(x1**2)x2 = np.linspace(0.01,10,100)y2 = np.sin(x2)x3 = np.random.rand(100)y3 = np.linspa
2022-05-25 15:00:23
317
原创 21.共享不同子区绘图区域的坐标轴
文章目录1.设置方法1.情景1:参数sharex="all"2.sharex="none"3.sharex="row"4.sharex="col"2.将共享坐标轴的子区之间的空隙去掉在前面介绍subplots()时使用了subplots(1,2,sharey=True)的形式,其中参数sharey表示子区1和子区2共享y坐标轴。对应的,还可以设置参数sharex的取值形式。具体来说sharex和sharey的取值形式有4种,分别是row,col,all和none,其中all和none分别等同于True和F
2022-05-25 14:43:45
1100
原创 20.matplotlib共享单一绘图区域的坐标轴
import matplotlib.pyplot as pltimport matplotlib as mplimport numpy as npmpl.rcParams["font.sans-serif"]=["FangSong"]mpl.rcParams["axes.unicode_minus"]=Falsefig,ax1 = plt.subplots()t = np.arange(0.05,10.0,0.01)s1 = np.exp(t)ax1.plot(t,s1,c="b",ls
2022-05-25 09:16:12
251
原创 19.函数subplots():创建一张画布带有多个子区的绘图模式
文章目录2.创建一张画布和两个子区的绘图模式3.多种统计图形组合展示使用函数subplots(),只用一句matplotlib.pylot.subplots()调用命令就可以非常便捷的创建1行1列的网格布局的子区,同时创建一个画布对象。也就是说,函数subplots()返回值是一个(fig,ax)元组,其中fig是figure实例,ax可以是一个axis对象数组。因此,使用函数subplots()可以创建一张画布带有多个子区的绘图模式的网格布局。import matplotlib.pyplot as p
2022-05-25 09:04:13
870
原创 18.函数subplot2grid():让子区跨越固定的网格布局
文章目录1.subplot2grid()的使用方法subplot2grid()函数的rowspan和colspan参数可以让子区跨越固定的网格布局的多个行和列,实现不同的子区布局,比上一种方法方便许多。1.subplot2grid()的使用方法import matplotlib.pyplot as pltimport matplotlib as mplimport numpy as npmpl.rcParams["font.sans-serif"]=["SimHei"]mpl.rcParam
2022-05-23 13:37:17
1512
原创 17.subplot():绘制网格区域中的几何形状相同的子区布局
文章目录1.函数subplot()的使用方法2.在极坐标轴上绘制折线图3.在极坐标轴上绘制散点图4.在非等分画布的绘图区域上实现图形展示subplot(C,R,P),表示在C行R列的网格布局上,子区subplot()会被放置到第p个位置上。子区编号从1开始,起始于左上角,序号一次向右递增。subplot(2,3,4)是第二行的第一个子区。1.函数subplot()的使用方法import matplotlib.pyplot as pltimport matplotlib as mplimport n
2022-05-23 13:06:59
551
原创 16.matplotlib实现标题和坐标轴的投影效果
文章目录1.实现标题和坐标轴标签的投影效果2.给坐标轴标签添加文本框1.实现标题和坐标轴标签的投影效果import matplotlib.pyplot as pltimport matplotlib.patheffects as pesimport matplotlib as mplimport numpy as npx = np.linspace(0.5,3.5,100)y = np.sin(x)fontsize = 23# plot a sin(x) funcplt.plot(
2022-05-22 17:44:00
559
原创 15.matplotlib添加有指示注解和无指示注解
文章目录1.有指示注解和无指示注解的添加方法2.圆角文本框设置3.文本的水印效果3.圆角线框的有弧度指示的注解4.有箭头指示的群实现6.桑基图当我们想对图形做出一些注释和说明时,可以使用注解annotate,相对应的面向对象的实例方法是Axes.annotate()。注解本身也有作用对象之分,有对细节做出标志的有指示注解和对整体做出说明的无指示注解两类。有指示注解是通过箭头的指示的方法对绘图区域中的内容进行解释的标注方法。无指示注解是单纯使用文本进行内容注释或是说明的标注方法。1.有指示注解和无指示注
2022-05-21 19:50:12
1012
原创 14.matplotlib设置坐标轴的刻度样式
文章目录1.刻度定位器和刻度格式器的使用方法2.调用模块pyplot中的函数实现刻度样式的设置3.货币和时间序列样式的刻度标签刻度作为统计图的一部分,由刻度标签和刻度线组成,如果需要进一步设置刻度样式,需要知道两个概念,定位器(locator)和刻度格式器(formatter)。刻度定位器用来设置刻度线的位置,刻度格式器用来设置刻度标签的显示样式。1.刻度定位器和刻度格式器的使用方法import matplotlib as mplimport matplotlib.pyplot as pltimp
2022-05-19 08:59:06
5227
原创 13.完善统计图形——向统计图形添加表格
import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npmpl.rcParams["font.sans-serif"]=["FangSong"]mpl.rcParams["axes.unicode_minus"]=Falselabels = "A难度水平","B难度水平","C难度水平","D难度水平"students = [0.35,0.15,0.20,0.30]explode = (0.1,0
2022-05-19 08:29:27
411
原创 12.完善统计图形——调整刻度范围和刻度标签
文章目录1.调整刻度范围和刻度标签——xlim()和xticks()2.逆序设置坐标轴刻度标签刻度范围是绘图区域中坐标轴的取值区间,包括x轴和y轴的取值区间。刻度范围是否合适直接决定绘图区域中图形展示效果的优劣。因此,调整刻度范围对可视化效果的影响十分明显。同理,刻度标签的样式也同样影响可视化效果的优劣。1.调整刻度范围和刻度标签——xlim()和xticks()import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-2
2022-05-18 18:44:08
765
原创 12.完善统计图形——添加图例和标题
文章目录1.函数legend()和函数title()的使用方法2.图例的展示样式的调整3.标题的展示样式的调整4.带图例的饼图1.函数legend()和函数title()的使用方法import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npmpl.rcParams["font.sans-serif"]=["FangSong"]mpl.rcParams["axes.unicode_minus"]=False
2022-05-18 18:06:28
616
1
原创 11.绘制统计图形——误差棒图
文章目录1.应用场景——定量数据的误差范围2.带误差棒的柱状图3.带误差棒的条形图4.带误差棒的多数据并列柱状图5.带误差棒的堆积柱状图在很多科学实验中都存在测量误差或是试验误差,这是无法控制的客观因素。这样,在可视化结果的时候,最好可以给实验结果增加观测结果的误差以表示客观存在的测量偏差。误差棒图就是可以用在这一场景中的很理想的统计图形。1.应用场景——定量数据的误差范围通过抽样获得样本,对总体参数进行估计会由于样本的随机性导致参数估计值出现波动,因此需要用误差置信区间来表示对总体参数估计的可靠范围
2022-05-18 10:59:52
15448
原创 10.绘制统计图形——箱线图
文章目录1.应用场景——多组定量数据的分布比较2.绘制原理3.延伸——箱体、箱须、离群值的含义和计算方法4.水平方向的箱线图5.不绘制离群值的水平放置的箱线图箱线图是由一个箱体和一对箱须所组成的统计图形。箱体是由第一四分位数、中位数(第二四分位数)和第三四分位数所组成的。在箱须的末端之外的数值可以理解成离群值,因此,箱须是对一组数据范围的大致直观描述。1.应用场景——多组定量数据的分布比较箱线图主要应用在一系列测量或观测数据的比较场景中,例如学校间或班级间测试成绩的比较,球队中的队员体能对比,产品优化
2022-05-17 16:13:00
5278
原创 9.绘制统计图形——饼图
文章目录1.绘制原理2.非分裂式饼图3.绘制内嵌环形饼图饼图是用来展示定性数据比例分布特征的统计图形。饼图主要用在进行离散型数据的比例展示。如需要展示参加硕士研究生考试的性别比例,某一年中四季使用天然气用量的比重以及家庭生活开支用途的比例分布,这些场景都是使用饼图进行数据可视化的不二之选,通过绘制饼图,就可以直观地反应研究对象定性数据的比例分布情况。1.绘制原理import matplotlib as mplimport matplotlib.pyplot as pltmpl.rcParams[
2022-05-17 10:20:23
1722
原创 8.绘制统计图形——直方图
文章目录1.绘制原理2.柱状图和直方图的关系3.堆积直方图直方图主要是应用在定量数据的可视化场景中,后者用来进行连续型数据的可视化展示。比如公共英语考试分数的区间分布、抽样调查中的人均寿命的分布特征以及居民可支配收入的分布特征。1.绘制原理import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npmpl.rcParams["font.sans-serif"]=["SimHei"]mpl.rcParams[
2022-05-16 20:04:59
2075
原创 7.绘制统计图形——堆积折线图、间断条形图和阶梯图
文章目录1.用函数stackplot()绘制堆积折线图2.用函数broken_brah()绘制间断条形图3.用函数step()绘制阶梯图1.用函数stackplot()绘制堆积折线图堆积折线图是通过绘制不同数据集的折线图而生成的。堆积折线图是按照垂直方向上彼此堆叠且不相互覆盖的排列顺序,绘制若干条折线图而形成的组合图形。import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npx = np.arange(1
2022-05-16 19:38:16
2560
原创 6.绘制统计图形——分块图
文章目录1.多数据并列柱状图2.多数据平行条形图分块图可以分为多数据并列柱状图和多数据平行条形图。1.多数据并列柱状图import matplotlib as mplimport matplotlib.pyplot as pltimport numpy as npmpl.rcParams["font.sans-serif"]=["SimHei"]mpl.rcParams["axes.unicode_minus"]=False# some simple datax = np.arange
2022-05-16 10:34:48
221
原创 5.绘制统计图形——堆积图
文章目录1.堆积柱状图2.堆积条形图堆积图顾名思义就是将若干统计图形堆叠起来的统计图形,自然是一种组合式图形。1.堆积柱状图如果将函数bar()中的参数bottom的取值设定为列表y,列表y1=[2,6,3,8,5]代表另一套试卷的份数,函数bar(x,y1,bottom=y,color=“r”)就会输出堆积柱状图。import matplotlib as mplimport matplotlib.pyplot as pltmpl.rcParams["font.sans-serif"]=["S
2022-05-15 14:46:43
3153
原创 4.绘制统计图形——条形图
文章目录如果将柱状图中的柱体由垂直方向变成水平方向,柱状图就变成条形图,函数也就变成barth(x,y,align="center",color="k",tick_label=["A","B","C","D","E"])其中参数x是y轴上柱体标签值,y是柱体的宽度,在x轴上显示,ticket_label表示y轴上的柱体标签值。import matplotlib as mplimport matplotlib.pyplot as pltmpl.rcParams["font.sans-serif
2022-05-15 11:55:09
442
原创 3.绘制统计图形——柱状图
文章目录1.代码实现2.代码解释3.参数探索下面一具体应同场景为实践基础,详细说明柱状图、直方图、饼图、箱线图、误差棒图的步伐图形的绘制方法。柱状图是描述统计中使用频率非常高的一种统计图形。它有垂直样式和水平样式两种可视化效果。应用场景:柱状图主要是应用在定性数据的可视化场景中,或者离散型数据的分布展示。例如,一个本科班级的籍贯分布,出国人士的职业分布以及下载一款APP产品的操作系统分布。1.代码实现import matplotlib as mplimport matplotlib.pyplot
2022-05-15 11:48:48
1195
原创 2.使用统计函数绘制简单图形
在前面学习了属于统计图形范围的折线图和散点图。下面来学习大家比较熟悉又经常混淆的统计图形,掌握这些统计图形可以对数据可视化有一个深入的了解。1.函数bar()——用于绘制柱状图函数功能:在x轴上绘制定性数据的分布特征调用签名:plt.bar(x,y)参数说明x:标示在x轴上的定性数据的类别y:每种定性数据的类别的数量import matplotlib as mplimport matplotlib.pyplot as pltmpl.rcParams["font.sans-serif"]
2022-05-15 11:21:13
593
原创 1.绘制matplotlib图表组成元素的函数用法
文章目录1.函数plot()——展现变量的趋势变化2.函数scatter()——寻找变量之间的关系3.函数xlim()——设置x轴的数值显示范围4.函数xlabel()——设置x轴的标签文本5.函数grid()——绘制刻度线的网格线6.函数axhline()——绘制平行于x轴的水平参考线7.函数axvspan()——绘制垂直于x轴的参考区域8.函数annotate()——添加图形内容细节的指向型注释文本9.函数text()——添加图形内容细节的无指向型注释文本10.函数title()——添加图形内容的标题1
2022-05-14 20:46:52
888
图像在12个不同颜色空间下的显示代码(matlab)
2020-11-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人