- 博客(76)
- 收藏
- 关注
原创 SVM——《统计学习方法第七章》
为什么叫支持向量机在第二章中我们学过感知机,它是最小化所有误分类点到超平面的距离之和, M 为误分类点的集合,得到的分离超平面是不唯一的。minω,b[−∑xi∈Myi(ω⋅xi+b)]\min_{\omega,b}[-\sum_{x_i \in M}y_i (\omega\cdot x_i+b)]ω,bmin[−xi∈M∑yi(ω⋅xi+b)]在支持向量机中,{分类确信度∣ω⋅xi+b∣∣∣ω∣∣分类正确性yi(ω⋅xi+b)⇒几何间隔γi=yi(ω⋅xi+b)∣∣ω∣∣\begi
2023-06-05 15:54:04 711
原创 最大熵模型
内容源于公众号《简博士数据分析吧》和b站《【合集】十分钟 机器学习 系列视频 《统计学习方法》》代码来自于https://blog.csdn.net/weixin_41566471/article/details/106319467最大熵原理在满足约束条件的模型集合中选取熵最大的模型离散:max−∑xp(x)logp(x)s.t.∑xp(x)=1\begin{aligned}&\max \quad -\sum_x p(x)\log p(x) \\&s.t. \qu
2023-06-04 20:37:02 528
原创 因子分析模型介绍、matlab案例我国上市公司盈利能力与资本结构的实证分析
因子分析模型介绍、matlab案例我国上市公司盈利能力与资本结构的实证分析
2022-08-13 12:06:13 1367
原创 主成分分析;主成分回归分析——Hald水泥问题;主成分分析案例——各地区普通高等教育发展水平综合评价;matlab
主成分分析;主成分回归分析——Hald水泥问题;主成分分析案例——各地区普通高等教育发展水平综合评价;matlab
2022-08-09 12:30:45 2804
原创 聚类分析、matlab\我国各地区普通高等教育发展状况分析、Q型、R型聚类
聚类分析、matlab\我国各地区普通高等教育发展状况分析、Q型、R型聚类、谱系聚类、肘部法则
2022-08-09 12:17:23 4350
原创 集成学习、boosting、bagging、Adaboost、GBDT、随机森林
集成学习、boosting、bagging、Adaboost、GBDT、随机森林
2022-08-01 11:18:54 692 3
原创 ubuntu虚拟环境安装以及远程jupyter
ubuntu安装虚拟环境,于是可以在不同的虚拟环境中安装不同版本的包;ubuntu远程操作jupyter
2022-08-01 11:08:00 263
原创 特征工程(文本特征提取CountVectorizer、TF-IDF 分词jieba、归一化、标准化 )、python示例
简单学习特征工程、中英文文本特征提取CountVectorizer、TF-IDF、jieba
2022-07-20 20:50:43 733
原创 岭回归和lasso回归
本文内容来源于清风老师的讲解回归中关于自变量的选择大有门道,变量过多可能会导致多重共线性问题造成回归系数的不显著,甚至造成OLS估计的失效。岭回归和lasso回归在OLS回归模型的损失函数(残差平方和SSE)上加上了不同的惩罚项,该惩罚项由回归系数的函数构成,一方面,加入的惩罚项能够识别出模型中不重要的变量,对模型起到简化作用,可以看作逐步回归的升级班;另一方面,加入的惩罚项会让模型变得可估计,即使之前的数据不满足列满秩。岭回归的原理多元线性回归:β^=arg min∑i=1n(yi−x.
2022-05-29 11:58:05 619
原创 多元线性回归
本文内容来源于清风老师的讲解对于线性的理解假定xxx是自变量,yyy是因变量,且满足线性关系:yi=β0+β1xi+μiy_i=\beta_0+\beta_1 x_i+\mu_iyi=β0+β1xi+μi线性假定并不要求初始模型都呈上述的严格线性关系,自变量与因变量可通过变量替换而转成线性关系模型,如:yi=β0+β1lnxi+μilnyi=β0+β1lnxi+μiyi=β0+β1xi+μiyi=β0+β1x1i+β2x2i+δx1ix2i+μiy_i=\beta_0+\.
2022-05-29 11:56:48 393
原创 约瑟夫生者死者小游戏,python实现
30 个人在一条船上,超载,需要 15 人下船。于是人们排成一队,排队的位置即为他们的编号。报数,从 1 开始,数到 9 的人下船。如此循环,直到船上仅剩 15 人为止,问都有哪些编号的人下船了呢?解决方法:把编号存在一个列表里list_peple=list(range(1,31))访问第一个元素,把第一个移到最后一个;重复该步骤8次;第9次的时候直接删除“头”元素重复第2步,直到删除了15个元素python代码:remove_sum=15remove_num=9remove_li.
2022-05-23 17:40:45 879
原创 Bootstrap方法(参数和非参数Bootstrap方法)、Matlab算例
非参数Bootstrap方法设总体的分布FFF未知,但按放回抽样的方法抽取了一个容量为nnn的样本,称为Bootstrap样本或称为自助样本。独立地取多个Bootstrap样本,利用这些样本信息对总体FFF进行推断,这种方法称为非参数Bootstrap方法,又称为自助法。这一方法可用于对总体知之甚少地情况。优点:不需要对总体分布有任何假设,而且可以使用于小样本,且能用于各种统计量。估计量的标准误差的Bootstrap估计在估计总体位置参数θ\thetaθ时,不仅要给出θ\thetaθ的估计θ^
2022-05-15 18:20:01 7970 1
原创 区间估计、假设检验、经验分布、Q-Q图、非参数假设检验(卡方、柯尔莫哥洛夫、秩和)、Matlab实现案例
区间估计例1分别使用金球和铂球测定引力常数(单位:10−11m3⋅kg−1⋅s−210^{-11}m^3\cdot kg^{-1}\cdot s^{-2}10−11m3⋅kg−1⋅s−2)。(1)用金球测定观察值为6.683,6.681,6.676,6.678,6.679,6.672。(2)用铂球测定观察值为6.661,6.661,6.667,6.667,6.664。设测定值总体为N(μ,σ2),μ,σ2N(\mu,\sigma^2),\mu,\sigma^2N(μ,σ2),μ,σ2均为未知,
2022-05-12 16:07:26 1248
原创 人口模型(Malthus模型、阻滞增长模型、美国人口的预报模型(例题,matlab工具箱求解))
Malthus模型模型假设:x(t)x(t)x(t)表示ttt时刻的人口数,且x(t)x(t)x(t)连续可微。人口的增长率rrr是常数(增长率=出生率-死亡率)。人口数量的变化是封闭的,即人口数量的增加与减少只取决于人口中个体的生育和死亡,且每一个个体都具有同样的生育能力和死亡率。建模与求解ttt时刻到t+△tt+\triangle tt+△t时刻人口的增量为x(t+△t)−x(t)=rx(t)△tx(t+\triangle t)-x(t)=rx(t)\triangle tx(t+△t)
2022-05-01 17:25:15 4854
原创 matlab求微分方程的解析解
[y1, …, yN ] = dsolve(eqns, conds ) eqns:微分方程(组),conds 为初值条件或边界条件求解微分方程的通解例1求解常微分方程x2+y+(x−2y)y′=0x^2+y+(x-2y)y^{'}=0x2+y+(x−2y)y′=0syms y(x)%定义符号变量dsolve(x^2+y+(x-2*y)*diff(y)==0)求解常微分方程的初边值问题例2y′′′−y′′=x,y(1)=8,y′(1)=7,y′′(2)=4y^{'''}-y^{''.
2022-04-30 21:43:20 1506
原创 Matlab求微分方程的数值解
[x,y]=solver(‘f’,ts,x0,options)f表示由待解的微分方程编写的m函数文件名,要将微分方程写成标准形式solver 代表求解函数,常见函数有7种ts=[t0,tfinal]是求解区间x0表示函数的初始值options=odeset(‘reltol’,rt,‘abstol’,at),rt at分别为设定的相对误差和绝对误差,默认为10-3``和10-6例1 一阶微分方程求方程y−y′=2xy-y^{'}=2xy−y′=2x的数值解,初始值y(0)=3y(0).
2022-04-30 21:38:25 2238
原创 曲线拟合的最小二乘法(多项式拟合、任意拟合一元函数、函数逼近、python/matlab)
曲线拟合的理论在数值分析中由详细介绍多项式拟合方法a = polyfit(x0, y0, m) x0,y0为要拟合的数据,m为拟合多项式的次数,输出的a为次数从高到低的系数y = polyval(a, x) 多项式在x处的值例1某乡镇企业1990-1996 年的生产利润如下表试预测1997 年和1998 年的利润。matlab两种方法求解x0=[1990 1991 1992 1993 1994 1995 1996];y0=[70 122 144 152.
2022-04-27 16:53:36 2180
原创 插值方法(一维插值、三次样条插值、二维插值的matlab自带函数,python实现/作图)
数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的单又比较靠谱的值来满足需求,这就是插值的作用。插值法在数值分析课程中有详细介绍。一维插值函数y = interp1(x0, y0, x, ‘menthod’)**method **指定插值的方法,默认为线性插值。其值可为:‘nearest’最近项插值‘linear’线性插值‘spline’立方样条插.
2022-04-25 21:18:45 9341
原创 最短路问题 、迪克斯特拉(Dijkstra)算法、Floyd算法、matlab、python
以下链接是语雀原文,观感更好https://www.yuque.com/chenyujiao-4zrlp/df8osp/ywckpi迪克斯特拉(Dijkstra)算法赋权图G=(V,E,W)G=(V,E,W)G=(V,E,W),求赋权图中指定的两个顶点u0,v0u_0,v_0u0,v0间的具有最小权的路,这条路称为u0,v0u_0,v_0u0,v0间的最短路,它的权称为u0,v0u_0,v_0u0,v0间的距离,记为d(u0,v0)d(u_0,v_0)d(u0,v0)。迪克斯特拉(
2022-04-22 21:54:06 1148
原创 图的基本概念与数据结构
基本概念图论中的图是由若干个给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。一个图可以用数学语言描述为G(V(G),E(G))G(V(G),E(G))G(V(G),E(G))。V(vertex)指的是图的顶点集,E(edge)指的是图的边集。度:设vvv是边eee的端点,则称vvv与eee相关联,与顶点vvv关联的边数称为该顶点的度,记为d(v)d(v)d(v)。度为奇数的顶点称为奇顶点,度为偶数的顶点称
2022-04-20 20:46:15 675
原创 非线性规划、例题的matlab\python实现、选址问题的matlab实现
非线性规划模型目标函数或约束条件中包含非线性函数的数学规划问题称为非线性规划问题minf(x)s.t.{A⋅x≤bAeq⋅x=beqc(x)≤0ceq(x)=0lb≤x≤ub\min\quad f(\boldsymbol x)\\s.t.\begin{cases}A\cdot\boldsymbol x\le\bm b\\Aeq\cdot\bm x=beq\\c(\bm x)\le0\\ceq(\bm x)=0\\lb\le\bm x\le ub\end{cases}minf(x)s
2022-04-20 20:43:11 2448
原创 整数规划,背包问题、指派问题、钢管切割问题的Matlab和python实现
整数规划问题整数规划的典例:背包问题、指派问题、钢管切割问题matlab\python实现
2022-04-10 17:25:57 4647
原创 云模型的理解及Matlab实例
云模型基础知识 云模型属于不确定性人工智能范畴,主要用于定性与定量之间的相互转换。自然界中的不确定性从属性角度来说主要有随机性和模糊性 举一个简单的例子,形容一个人是高个子是一件相当模型的事情,因为无法确定身高达到多少算高个子。但可以这样说:身高2m的人,100%属于高个子的人;身高1.7m的人,55%属于高个子的人;身高1.5m的人,10%属于高个子的人(几乎不认为他是高个子)论域 本例中,高个子是个定性概念,可以理解为身高1.7m的人属于高个子(论域UUU)的符合程度为0.55隶属度/
2022-04-05 22:40:03 18164 6
原创 层次分析法(AHP)
层次分析法的应用场景AHP的本质是根据人们对事物的认知特征,将感性认识进行定量化的过程。主要有以下场景:评价、评判类的题目。例如:奥运会的评价、彩票方案的评价、城市空气质量分析等资源分配和决策类的题目。例如:方案的选择问题,旅游景点的选择、电脑的选择、学校的选择等,可以转化为评价类题目一些优化问题,特别是多目标优化问题。多目标规划借助层次分析法确定各个目标的权重,从而将多目标规划问题转化为可以求解的单目标规划问题AHP的思想 层次分析法是一种系统分析与决策得综合评价方法,是在充分研究了人
2022-04-04 18:43:24 1976 1
原创 Task 30_课程表Ⅱ
题目现在你总共有 n 门课需要选,记为 0 到 n-1。在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。思路同Task29 public class Solution { public int[] FindOrder(int n
2020-05-12 16:10:13 115
原创 Task 29_207_课程表
题目你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?思路以上图为例,先把int[][]转化成一个数组,数组元素的类型是LinkedList,如上图list把一门课程需要修的先修课程的门数存放在count数组中,如上图count再把先修课程数为0的课程放进队列
2020-05-12 13:00:38 113
原创 Task28_二叉树的最近公共祖先
思路1:分别找到从根节点到p,q的路径在两条路径上找到最后一个相同节点,即最近的公共祖先 public class Solution { public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { List<TreeNode>...
2020-04-28 14:59:51 102
原创 Task27_104_二叉树的最大深度
题目给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。思路回溯递归 public class Solution { public int MaxDepth(TreeNode root) { int result=0; Df(root, ref result,0);...
2020-04-28 13:19:13 101
原创 Task26_101_对称二叉树
题目给定一个二叉树,检查它是否是镜像对称的。思路把一棵树除根节点外看成两棵树。根据这两棵树的根节点判断public class Solution { public bool IsSymmetric(TreeNode root) { if (root == null) return tru...
2020-04-23 08:54:56 80
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人