目的
- 对原变量加以“改造”,在不致损失原变量太多信息的条件下尽可能地降低变量地维数,即用较少的“新变量”代替原来地各变量。
- 通过变换:用低维(主成分)近似高维(较全面)信息。
思想
- 若有二维数据分布如上图所示,↗方向的数据分布最离散,方差最大,包含的信息最多,作为第一主成分;↖方向与第一主成分的方向是正交(信息不重叠)的,且在所有与第一主成分正交的方向中,它是最离散,方差最大的,作为第二主成分。
- 注意:上述表达只是为了方便理解主成分分析的思想,用语不是很严谨。
- 设 X = ( X 1 , X 2 , . . . , X p ) T X=(X_1,X_2,...,X_p)^T X=(X1,X2,...,Xp)T,协方差为
C o v ( X ) = Σ = ( σ i j ) p × p = E [ ( X − E ( X ) ) ( X − E ( X ) ) T ] Cov(X)=\Sigma=(\sigma_{ij})_{p\times p}=E[(X-E(X))(X-E(X))^T] Cov(X)=Σ=(σij)p×p=E[(X−E(X))(X−E(X))T]
- 作
Y
1
=
a
1
T
X
=
a
11
X
1
+
a
12
X
2
+
.
.
.
+
a
1
p
X
p
Y_1=a_1^TX=a_{11}X_1+a_{12}X_2+...+a_{1p}X_p
Y1=a1TX=a11X1+a12X2+...+a1pXp
s
.
t
.
{
max
V
a
r
(
Y
1
)
=
V
a
r
(
a
1
T
X
)
=
a
1
T
Σ
a
1
(
方差最大,信息最多
)
a
1
T
a
1
=
1
(
长度不变
)
s.t.\quad \begin{cases} \max \quad Var(Y_1)=Var(a_1^TX)=a_1^T \Sigma a_1(方差最大,信息最多)\\ a_1^Ta_1=1(长度不变) \end{cases}
s.t.{maxVar(Y1)=Var(a1TX)=a1TΣa1(方差最大,信息最多)a1Ta1=1(长度不变)
由此得第一主成分。
- 作
Y
2
=
a
2
T
X
=
a
21
X
1
+
a
22
X
2
+
.
.
.
+
a
2
p
X
p
Y_2=a_2^TX=a_{21}X_1+a_{22}X_2+...+a_{2p}X_p
Y2=a2TX=a21X1+a22X2+...+a2pXp
s
.
t
.
{
max
V
a
r
(
Y
1
)
=
V
a
r
(
a
1
T
X
)
=
a
1
T
Σ
a
1
a
1
T
a
1
=
1
C
o
v
(
Y
2
,
Y
1
)
=
C
o
v
(
a
2
T
X
,
a
1
T
X
)
=
a
2
T
Σ
a
1
=
0
(
和前面的向量不相关
)
s.t.\quad \begin{cases} \max \quad Var(Y_1)=Var(a_1^TX)=a_1^T \Sigma a_1\\ a_1^Ta_1=1\\ Cov(Y_2,Y_1)=Cov(a_2^TX,a_1^TX)=a_2^T\Sigma a_1=0(和前面的向量不相关) \end{cases}
s.t.⎩
⎨
⎧maxVar(Y1)=Var(a1TX)=a1TΣa1a1Ta1=1Cov(Y2,Y1)=Cov(a2TX,a1TX)=a2TΣa1=0(和前面的向量不相关)
由此得第二主成分。
- 一般若 Y 1 , Y 2 , . . . , Y k − 1 Y_1,Y_2,...,Y_{k-1} Y1,Y2,...,Yk−1还不够,则继续作
Y
k
=
a
2
T
X
=
a
k
1
X
1
+
a
k
2
X
2
+
.
.
.
+
a
k
p
X
p
Y_k=a_2^TX=a_{k1}X_1+a_{k2}X_2+...+a_{kp}X_p
Yk=a2TX=ak1X1+ak2X2+...+akpXp
s
.
t
.
{
max
V
a
r
(
Y
1
)
=
V
a
r
(
a
1
T
X
)
=
a
1
T
Σ
a
1
a
1
T
a
1
=
1
C
o
v
(
Y
k
,
Y
i
)
=
a
k
T
Σ
a
i
=
0
,
i
=
1
,
.
.
,
k
−
1
(
和前面的向量不相关
)
s.t.\quad \begin{cases} \max \quad Var(Y_1)=Var(a_1^TX)=a_1^T \Sigma a_1\\ a_1^Ta_1=1\\ Cov(Y_k,Y_i)=a_k^T\Sigma a_i=0,i=1,..,k-1(和前面的向量不相关) \end{cases}
s.t.⎩
⎨
⎧maxVar(Y1)=Var(a1TX)=a1TΣa1a1Ta1=1Cov(Yk,Yi)=akTΣai=0,i=1,..,k−1(和前面的向量不相关)
由此得第k主成分。
计算过程
- 具体的证明过程不在此作详细阐述。
主成分回归分析
- 主成分回归分析是为了克服最小二乘法(LS)估计在数据矩阵存在多重共线性时表现出的不稳定性质而提出的
- 主成分回归分析选择其中一部分重要的主成分作为新的自变量,丢弃了一部分影响不大的自变量,实际上达到了降维的目的,然后用最小二乘法对选取主成分后的模型进行参数估计,最后再变换回原来的模型求出参数的估计
案例
- x 0 = ( 13 , 4 ) y 0 = ( 12 , 1 ) x0=(13,4)\quad y0=(12,1) x0=(13,4)y0=(12,1)
- 标准化 x d = ( 13 , 4 ) y d = ( 12 , 1 ) xd=(13,4)\quad yd=(12,1) xd=(13,4)yd=(12,1)
- 进行主成分,vec2=(4×4)的每一列是特征向量,df=xd*vec2=(13×4)的一行就是一个样本在不同主成分上的得分(也就是原来的xd经过变换得到的新的数据df)
- 选择三个主成分:
[
z
1
z
2
z
3
]
3
×
1
=
v
e
c
2
[
:
,
1
:
3
]
(
3
×
4
)
T
∗
[
x
~
1
x
~
2
x
~
3
x
~
4
]
4
×
1
\begin{bmatrix} z_1\\ z_2\\ z_3 \end{bmatrix}_{3\times 1} =vec2[:,1:3]^T_{(3×4)}*\begin{bmatrix} \tilde x_1\\ \tilde x_2\\ \tilde x_3\\ \tilde x_4 \end{bmatrix}_{4\times 1}
⎣
⎡z1z2z3⎦
⎤3×1=vec2[:,1:3](3×4)T∗⎣
⎡x~1x~2x~3x~4⎦
⎤4×1
则df的前三列进行回归
y
^
=
b
_
c
p
a
1
×
3
T
∗
[
z
1
z
2
z
3
]
3
×
1
\hat y=b\_cpa^T_{1\times 3}*\begin{bmatrix} z_1\\ z_2\\ z_3 \end{bmatrix}_{3\times 1}
y^=b_cpa1×3T∗⎣
⎡z1z2z3⎦
⎤3×1
- 化成标准化回归即 z → x ~ z\to \tilde x z→x~
y ^ = b _ c p a ( 1 × 3 ) T ∗ v e c 2 [ : , 1 : 3 ] ( 3 × 4 ) T ∗ [ x ~ 1 x ~ 2 x ~ 3 x ~ 4 ] 4 × 1 = b _ s t d _ c p a ( 1 × 4 ) T ∗ [ x ~ 1 x ~ 2 x ~ 3 x ~ 4 ] 4 × 1 \hat y=b\_cpa^T_{(1\times 3)}*vec2[:,1:3]^T_{(3×4)}*\begin{bmatrix} \tilde x_1\\ \tilde x_2\\ \tilde x_3\\ \tilde x_4 \end{bmatrix}_{4\times 1}=b\_std\_cpa^T _{(1\times 4)}*\begin{bmatrix} \tilde x_1\\ \tilde x_2\\ \tilde x_3\\ \tilde x_4 \end{bmatrix}_{4\times 1} y^=b_cpa(1×3)T∗vec2[:,1:3](3×4)T∗⎣ ⎡x~1x~2x~3x~4⎦ ⎤4×1=b_std_cpa(1×4)T∗⎣ ⎡x~1x~2x~3x~4⎦ ⎤4×1
- 恢复到原始变量,即 x ~ → x \tilde x \to x x~→x
[
x
~
1
x
~
2
x
~
3
x
~
4
]
4
×
1
=
(
[
x
1
x
2
x
3
x
4
]
4
×
1
−
m
e
a
n
(
x
0
)
(
1
×
4
)
)
.
/
s
t
d
(
x
0
)
\begin{bmatrix} \tilde x_1\\ \tilde x_2\\ \tilde x_3\\ \tilde x_4 \end{bmatrix}_{4\times 1} = (\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}_{4\times 1} -mean(x0)_{(1\times 4)})./{std(x0)}
⎣
⎡x~1x~2x~3x~4⎦
⎤4×1=(⎣
⎡x1x2x3x4⎦
⎤4×1−mean(x0)(1×4))./std(x0)
y
^
=
[
y
−
m
e
a
n
(
y
0
)
]
.
/
s
t
d
(
y
0
)
\hat y=[y-mean(y0)]./std(y0)
y^=[y−mean(y0)]./std(y0)
[
y
−
m
e
a
n
(
y
0
)
]
.
/
s
t
d
(
y
0
)
=
b
_
s
t
d
_
c
p
a
(
1
×
4
)
T
∗
(
[
x
1
x
2
x
3
x
4
]
4
×
1
−
m
e
a
n
(
x
0
)
(
1
×
4
)
)
.
/
s
t
d
(
x
0
)
[y-mean(y0)]./std(y0)=b\_std\_cpa^T _{(1\times 4)}*(\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}_{4\times 1} -mean(x0)_{(1\times 4)})./{std(x0)}
[y−mean(y0)]./std(y0)=b_std_cpa(1×4)T∗(⎣
⎡x1x2x3x4⎦
⎤4×1−mean(x0)(1×4))./std(x0)
y
=
m
e
a
n
(
y
0
)
−
s
t
d
(
y
0
)
∗
m
e
a
n
(
x
0
)
.
/
s
t
d
(
x
0
)
∗
b
_
s
t
d
_
c
p
a
+
s
t
d
(
y
0
)
∗
b
_
s
t
d
_
c
p
a
T
.
/
s
t
d
(
x
0
)
∗
x
y=mean(y0)-std(y0)*mean(x0)./std(x0)*b\_std\_cpa\\+std(y0)*b\_std\_cpa^T./std(x0)*x
y=mean(y0)−std(y0)∗mean(x0)./std(x0)∗b_std_cpa+std(y0)∗b_std_cpaT./std(x0)∗x
clc,clear
load sn.txt
[m,n]=size(sn);
x0=sn(:,[1:n-1]);
y0=sn(:,n);
r=corrcoef(x0); %计算相关系数矩阵
xd=zscore(x0); %对设计矩阵进行标准化处理
yd=zscore(y0); %对y0进行标准化处理
%% 普通的回归
[b,BINT,R,RINT,STATS] = regress(y0,[ones(m,1),x0],0.05);%b=XY^{-1}
% BINT 回归系数的估计区间
% R 残差
% RINT 置信区间
% STATS 用于检验回归模型的统计量。有4个数值:判定系数r2r2,F统计量观测值,检验的p的值,误差方差的估计
% 越接近1,回归方程越显著;时拒绝,F越大,回归方程越显著;时拒绝
% ALPHA 显著性水平(缺少时默认0.05)
%% 1.主成分回归
[vec1,lamda,rate]=pcacov(r); %vec1为r的特征向量,lamda为r的特征值,rate为各个主成分的贡献率
contr=cumsum(rate); %计算累积贡献率,第i个分量表示前i个主成分的贡献率
%书上这一步不懂为什么要这样干?????希望有人能帮忙解答一下
f=repmat(sign(sum(vec1)),size(vec1,1),1); %构造与vec1同维数的元素为±1的矩阵
vec2=vec1.*f %修改特征向量的正负号,使得特征向量的所有分量和为正
df=xd*vec2; %计算所有主成分的得分
num=input('请选项主成分的个数:'); %通过累积贡献率交互式选择主成分的个数
b_cpa=df(:,[1:num])\yd; %主成分变量的回归系数,这里由于数据标准化,回归方程的常数项为0
%% 2.标准化的主成分回归
b_std_cpa=vec2(:,1:num)*b_cpa; %标准化变量的回归方程系数
%% 3.逆标准化(原始)的主成分回归
b_=[mean(y0)-std(y0)*mean(x0)./std(x0)*b_std_cpa, std(y0)*b_std_cpa'./std(x0)]; %计算原始变量回归方程的系数
%% 下面计算两种回归分析的剩余标准差
rmse1=sqrt(sum((b(1)+x0*b(2:end)-y0).^2)/(m-n)); %拟合了n个参数 rmse1 = 2.4460
rmse2=sqrt(sum((b_(1)+x0*b_(2:end)'-y0).^2)/(m-num)); %拟合了num个参数 rmse2 = 2.2029
主成分分析案例——各地区普通高等教育发展水平综合评价
clc,clear
load gj.txt %把原始数据保存在纯文本文件gj.txt中
gj=zscore(gj); %数据标准化
r=corrcoef(gj); %计算相关系数矩阵
%下面利用相关系数矩阵进行主成分分析,vec1的列为r的特征向量,即主成分的系数
[vec1,lamda,rate]=pcacov(r); %lamda为r的特征值,rate为各个主成分的贡献率
contr=cumsum(rate); %计算累积贡献率
f=repmat(sign(sum(vec1)),size(vec1,1),1);%构造与vec1同维数的元素为±1的矩阵
vec2=vec1.*f; %修改特征向量的正负号,使得每个特征向量的分量和为正
num=4; %num为选取的主成分的个数
df=gj*vec2(:,1:num); %计算各个主成分的得分
tf=df*rate(1:num)/100; %计算综合得分
[stf,ind]=sort(tf,'descend'); %把得分按照从高到低的次序排列
stf=stf'; ind=ind';