给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
思路:递归
如果没有’*'这个通配符,那么本题很容易实现
public:
bool nostar(string p)
{
bool nostar=true;
for(int i=0;i<size(p);i++)
{
if(p[i]=='*')
return false;
}
return true;
}
bool isMatch(string s, string p) {
if(nostar(p))
{
bool is=true;
if(size(s)!=size(p))
return false;
for(i=0;i<size(s);i++)
{
if(s[i]!=p[i]&&p[i]!='.')
is=false;
}
return is;
}
}
现在加上’*'后,我们需要额外进行递归处理
class Solution {
bool isMatch(string s, string p)
{
if(p=="")
return s=="";
//匹配串为空,原串也为空,说明匹配
//匹配串为空,原串不为空,说明不匹配
bool firstmatch=s!=""&&(s[0]==p[0]||p[0]=='.'); //第一个字符是否匹配
if(size(p)>=2&&p[1]=='*') //若匹配串长度不小于2且第二个字符为'*'则进行递归
{
return (isMatch(s,p.substr(2)))||
(firstmatch&&isMatch(s.substr(1),p));
}
/*
如果第一个字符匹配,则从s里下一个开始匹配,直到不匹配,
然后就跳过匹配串里这两个字符,看后面的是否匹配,
这样可以保证后面匹配前面一定匹配
*/
else
{
return firstmatch&&isMatch(s.substr(1),p.substr(1));
}
/*
如果匹配串里下一个字符不是'*',就继续匹配两个字符串的后一位,
当匹配串的长度不足2时,说明到了最后一位,再去匹配最后一位
*/
}
};
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/regular-expression-matching
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。