108 将有序数组转化为二叉搜索树

24 篇文章 1 订阅

题目

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,3] 和 [3,1] 都是高度平衡二叉搜索树。

  • 方法一:递归
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return sortedArrayToBST(nums, 0, nums.size()-1);
    }
    //传入数组,左边界,右边界
    TreeNode* sortedArrayToBST(vector<int>& nums, int left, int right){
        if(left>right) return NULL;//递归边界
        int mid = left + (right-left)/2;//根节点的下标
        TreeNode *root = new TreeNode(nums[mid]);//根节点
        root->left = sortedArrayToBST(nums, left, mid-1);//递归建立左子树
        root->right = sortedArrayToBST(nums, mid+1, right);//递归建立右子树
        return root;
    }
};
  • 时间复杂度O(n)
  • 空间复杂度O(logn)
  • 思路
    • 选择有序数组的中间数字作为二叉搜索树的根节点,这样分给左右子树的个数相同或只差1,可以使树保持平衡。如果数组长度是奇数,则根节点的选择是唯一的,如果数组长度为偶数,则选择中间位置左边的或右边的均可。
    • 传入三个参数,数组nums,当前二叉树节点及其孩子的数值范围,左边界left,右边界right,左闭右必区间
    • 类似二分查找,将数组传入区间的中间位置作为根节点,再递归建立左子树和右子树。左子树传入参数的右边界设置为mid-1,右子树传入参数的左边界设置为mid+1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值