题目
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,3] 和 [3,1] 都是高度平衡二叉搜索树。
- 方法一:递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
return sortedArrayToBST(nums, 0, nums.size()-1);
}
//传入数组,左边界,右边界
TreeNode* sortedArrayToBST(vector<int>& nums, int left, int right){
if(left>right) return NULL;//递归边界
int mid = left + (right-left)/2;//根节点的下标
TreeNode *root = new TreeNode(nums[mid]);//根节点
root->left = sortedArrayToBST(nums, left, mid-1);//递归建立左子树
root->right = sortedArrayToBST(nums, mid+1, right);//递归建立右子树
return root;
}
};
- 时间复杂度O(n)
- 空间复杂度O(logn)
- 思路
- 选择有序数组的中间数字作为二叉搜索树的根节点,这样分给左右子树的个数相同或只差1,可以使树保持平衡。如果数组长度是奇数,则根节点的选择是唯一的,如果数组长度为偶数,则选择中间位置左边的或右边的均可。
- 传入三个参数,数组nums,当前二叉树节点及其孩子的数值范围,左边界left,右边界right,左闭右必区间
- 类似二分查找,将数组传入区间的中间位置作为根节点,再递归建立左子树和右子树。左子树传入参数的右边界设置为mid-1,右子树传入参数的左边界设置为mid+1.