122.买卖股票的最佳时机II
想来,动规要比贪心简单。贪心有点抽象了。
贪心:如果能赚钱,就要买卖股票。
class Solution {
public int maxProfit(int[] prices) {
int[] dp = new int[prices.length];
dp[0] = 0;
for(int i=1; i<prices.length; i++){
int temp = prices[i]-prices[i-1];
dp[i] = temp > 0 ? dp[i-1]+temp: dp[i-1];
}
return dp[prices.length-1];
}
}
55. 跳跃游戏
class Solution {
public boolean canJump(int[] nums) {
int cur = 0;
int maxIndex = cur + nums[cur]; // 期望的最大位置
int right = maxIndex; // 区间的最右边
for(cur = 1; cur<nums.length && right<nums.length; ){
// 更新cur与对应的maxIndex:从cur遍历到right
for(; cur<=right; cur++){
maxIndex = Math.max(maxIndex, cur + nums[cur]);
}
if(right==maxIndex) break; // 区间遍历完,但是没更新期望边界
right = maxIndex;
}
if(right>=nums.length-1) return true;
return false;
}
}
代码随想录版本:
class Solution {
public boolean canJump(int[] nums) {
if (nums.length == 1) {
return true;
}
//覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
int coverRange = 0;
//在覆盖范围内更新最大的覆盖范围
for (int i = 0; i <= coverRange; i++) {
coverRange = Math.max(coverRange, i + nums[i]);
if (coverRange >= nums.length - 1) {
return true;
}
}
return false;
}
}
45.跳跃游戏II
第一次尝试:时间复杂度太高
class Solution {
public int jump(int[] nums) {
int[][] dp = new int[nums.length][2]; // 0表示需要几跳; 1表示从哪个位置跳过来——传递
for(int i=0; i<nums.length; i++){
Arrays.fill(dp[i], Integer.MAX_VALUE);
}
dp[0][0] = 0;
dp[0][1] = 0;
int i;
for(i=0; i<nums.length; i++){ // 更新下一步
for(int k=i+1; k<=i+nums[i] && k<nums.length; k++){
if(dp[k][0] > dp[i][0]+1){
dp[k][0] = dp[i][0] + 1;
dp[k][1] = i;
}
}
}
return dp[nums.length-1][0];
}
}
代码随想录版本:
// 版本二
class Solution {
public int jump(int[] nums) {
int result = 0;
// 当前覆盖的最远距离下标
int end = 0;
// 下一步覆盖的最远距离下标
int temp = 0;
for (int i = 0; i <= end && end < nums.length - 1; ++i) {
temp = Math.max(temp, i + nums[i]);
// 可达位置的改变次数就是跳跃次数
if (i == end) {
end = temp;
result++;
}
}
return result;
}
}
1005.K次取反后最大化的数组和
class Solution {
public int largestSumAfterKNegations(int[] nums, int k) {
// 第一次排序,找到所有负数
Arrays.sort(nums);
// 处理负数
int i = 0;
while (i < nums.length && nums[i] < 0 && k > 0) {
nums[i] = -nums[i]; // 取反
k--;
i++;
}
// 如果 k 用完了,直接返回数组的和
if (k == 0) {
return Arrays.stream(nums).sum();
}
// 如果 k 还有剩余,需要处理剩下的正数
// 再次排序,找到最小的正数
Arrays.sort(nums);
// 如果 k 是奇数,取反最小的正数
if ((k & 1) != 0) {
nums[0] = -nums[0];
}
// 返回数组的和
return Arrays.stream(nums).sum();
}
}
代码随想录版本:
IntStream.of()
基本类型的流,不会装箱。- 排序:按照绝对值从大到小排序
class Solution {
public int largestSumAfterKNegations(int[] nums, int K) {
// 将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
nums = IntStream.of(nums)
.boxed()
.sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
.mapToInt(Integer::intValue).toArray();
int len = nums.length;
for (int i = 0; i < len; i++) {
//从前向后遍历,遇到负数将其变为正数,同时K--
if (nums[i] < 0 && K > 0) {
nums[i] = -nums[i];
K--;
}
}
// 如果K还大于0,那么反复转变数值最小的元素,将K用完
if (K % 2 == 1) nums[len - 1] = -nums[len - 1];
return Arrays.stream(nums).sum();
}
}
// 版本二:排序数组并贪心地尽可能将负数翻转为正数,再根据剩余的k值调整最小元素的符号,从而最大化数组的总和。
class Solution {
public int largestSumAfterKNegations(int[] nums, int k) {
if (nums.length == 1) return nums[0];
// 排序:先把负数处理了
Arrays.sort(nums);
for (int i = 0; i < nums.length && k > 0; i++) { // 贪心点, 通过负转正, 消耗尽可能多的k
if (nums[i] < 0) {
nums[i] = -nums[i];
k--;
}
}
// 退出循环, k > 0 || k < 0 (k消耗完了不用讨论)
if (k % 2 == 1) { // k > 0 && k is odd:对于负数:负-正-负-正
Arrays.sort(nums); // 再次排序得到剩余的负数,或者最小的正数
nums[0] = -nums[0];
}
// k > 0 && k is even,flip数字不会产生影响: 对于负数: 负-正-负;对于正数:正-负-正
int sum = 0;
for (int num : nums) { // 计算最大和
sum += num;
}
return sum;
}
}