56. 合并区间
本来想着,像昨天的题()一样,按照end进行排序。
但是,考虑不全,对某些样例不通过。
// 错误解法
class Solution {
public int[][] merge(int[][] intervals) {
Arrays.sort(intervals, (a, b) -> (a[1] - b[1]));
List<int[]> result = new ArrayList<>();
int i=0;
int start = intervals[i][0], end = intervals[i][1];
for(i=0; i<intervals.length; i++){
if(intervals[i][0] <= end){// 可重叠
start = Math.min(start, intervals[i][0]);
end = Math.max(end, intervals[i][1]);
}else{
// 记录
result.add(new int[]{start, end});
// 重置
start = intervals[i][0];
end = intervals[i][1];
}
if(i+1==intervals.length){
result.add(new int[]{start, end});
}
}
return result.toArray(new int[result.size()][]);
}
}
经修改:
- 排序:按照start
- 循环:感觉用while更顺手——分为内循环、外循环。跳出内循环,就证明找到了一组可合并的区间。(如果是最后一组,也会自动跳出。)
class Solution {
public int[][] merge(int[][] intervals) {
Arrays.sort(intervals, (a, b) -> (a[0] - b[0]));
List<int[]> result = new ArrayList<>();
int i = 0;
while (i < intervals.length) {
int start = intervals[i][0];
int end = intervals[i][1];
// 合并重叠区间
while (i + 1 < intervals.length && intervals[i + 1][0] <= end) { // 如果是最后一组,也会自动跳出。
end = Math.max(end, intervals[i + 1][1]);
i++;
}
result.add(new int[]{start, end});
i++;
}
return result.toArray(new int[result.size()][]);
}
}
738.单调递增的数字
核心思路:一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9。
遍历顺序:从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299。
代码随想录版本:
- 使用char[]来接收,不必要转成int[]。
- 从start开始,后面的数都设为9——只需要把start记录下来即可。
- char[]抓换为String,再转换为int。
class Solution {
public int monotoneIncreasingDigits(int n) {
String s = String.valueOf(n);
char[] chars = s.toCharArray();
int start = s.length();
for (int i = s.length() - 2; i >= 0; i--) {
if (chars[i] > chars[i + 1]) {
chars[i]--;
start = i+1;
}
}
for (int i = start; i < s.length(); i++) {
chars[i] = '9';
}
return Integer.parseInt(String.valueOf(chars));
}
}