机器学习
文章平均质量分 89
矩池云Matpool
www.matpool.com
展开
-
面向开发者的 ChatGPT 提示工程课程|吴恩达携手OpenAI 教你如何编写 prompt
提示工程(Prompt Engineering)是一门相对较新的学科,旨在开发和优化提示,从而高效地将语言模型(LM)用于各种应用和研究主题,并帮助开发人员更好地理解大型语言模型(LLM)的能力和局限。课程在较短的篇幅内清晰地介绍了 ChatGPT 提示工程的工作原理、特性以及多类型实践应用,被称作为 ChatGPT 提示工程课程中的“六边形战士”。其中对于提示工程的讲解十分扎实,且吴教授平易近人,对ChatGPT的实操娓娓道来,深入浅出地对知识点做系统性介绍。原创 2023-06-07 10:15:40 · 459 阅读 · 0 评论 -
面向程序员的实用深度学习课程2022
Practical deep learning for coders 是fast.ai出品系列课程,深受学员欢迎,该课程的上一版本视频已经在线浏览超600万次。经过两年时间的打磨,该课程的最新版已经发布。课程主讲fast.ai创始人Jeremy Howard授课思路清晰,力求用更精简的代码,实现更高的运行效率、更好地演示解构及上手实践。原创 2022-12-05 14:15:27 · 591 阅读 · 0 评论 -
Andrej Karpathy | 详解神经网络和反向传播(基于micrograd)
课程时长 2 小时 25 分钟,基于 micrograd 详细介绍并演示了神经网络的搭建和反向传播的过程。Micrograd 是 Andrej 于 2020 年编写并开源的微型 autograd(自动梯度)引擎。其中用 100 行代码实现了针对动态构建的 DAG 的反向传播算法,并用 50 行代码实现了类 PyTorch API 的库。目前,micrograd 项目的 GitHub Star 量已达 2.6k。原创 2022-09-16 16:49:20 · 909 阅读 · 0 评论 -
在矩池云使用Disco Diffusion生成AI艺术图
在 Disco Diffusion 官方说明的第一段,其对自身是这样定义: AI Image generating technique called CLIP-Guided Diffusion。DD 是通过 CLIP 来进行图文匹配,引导 AI 进行图像生成的技术,通过 Diffusion 持续去噪去生成图像的,而在整个过程中,CLIP 不断地评估图像和文本之间的距离,来为生成图像的整体方向进行指导,最终就体现为“输入文字-生成图画”,因此我们便可以通过文字来引导AI生成艺术风格图片。启动矩池云快速使用D原创 2022-07-12 17:02:51 · 1515 阅读 · 1 评论 -
矩池云|Python生态下用GPU进行数据科学计算加速的实践经验&案例
在数据科学计算的实践中,会时常面临着数据计算加速的场景,分享基于实践者自己的实际经验出发,阐述实践中GPU加速数据科学计算的适用性及其判断依据,并以案例展示GPU优化计算任务的一些方案。...原创 2022-06-08 16:47:20 · 1905 阅读 · 0 评论 -
OneFlow|推荐一款兼容 PyTorch 的国产 AI 框架
在人工智能和深度学习的不断发展进程中,深度学习框架已经成为行业研发基础,承载着越来越多的研发者基于框架构建、训练和部署相关应用。基于深度学习框架,研发人员可以依据研究或业务目标更快速地开发相关应用,行业的研发效率和水平也因此得到了显著提升。在深度学习框架中,PyTorch 和 TensorFlow 推出时间比较早,在科研和研发场景渗透率都比较高,PyTorch 是目前受到用户喜欢的框架之一,它的 API 友好,Eager 模式让模型搭建和调试过程变得更加容易,但是静态图编译和部署体验还不能完全令人满意;另外原创 2022-05-31 10:44:03 · 702 阅读 · 0 评论 -
矩池云 | Tony老师解读Kaggle Twitter情感分析案例
今天Tony老师给大家带来的案例是Kaggle上的Twitter的情感分析竞赛。在这个案例中,将使用预训练的模型BERT来完成对整个竞赛的数据分析。导入需要的库import numpy as npimport pandas as pdfrom math import ceil, floorimport tensorflow as tfimport tensorflow.keras.l...原创 2020-04-10 10:55:33 · 1114 阅读 · 0 评论 -
矩池云 | 使用LightGBM来预测分子属性
今天给大家介绍提升方法(Boosting), 提升算法是一种可以用来减小监督式学习中偏差的机器学习算法。面对的问题是迈可·肯斯(Michael Kearns)提出的:一组“弱学习者”的集合能否生成一个“强学习者”?弱学习者一般是指一个分类器,它的结果只比随机分类好一点点。强学习者指分类器的结果非常接近真值。大多数提升算法包括由迭代使用弱学习分类器组成,并将其结果加入一个最终的成强学习分类器...原创 2020-04-02 16:41:20 · 597 阅读 · 0 评论 -
矩池云 | 教你如何使用GAN为口袋妖怪上色
在之前的Demo中,我们使用了条件GAN来生成了手写数字图像。那么除了生成数字图像以外我们还能用神经网络来干些什么呢?在本案例中,我们用神经网络来给口袋妖怪的线框图上色。第一步: 导入使用库from __future__ import absolute_import, division, print_function, unicode_literalsimport tensorflow...原创 2020-03-13 10:02:53 · 775 阅读 · 2 评论 -
矩池云 | 条件生成对抗模型生成数字图片
在上个数字识别的例子中,我们使用了一个简单的3层神经网络来识别给定图片的中的数字。这次我们在上次的例子中在提升一下,这次我们选用条件生成对抗模型(Conditional Generative Adversarial Networks)来生成数字图片。下面就让我们开始吧!第一步:import 我们需要的数据库%matplotlib inlinefrom __future__ import...原创 2020-03-09 14:57:54 · 548 阅读 · 0 评论 -
矩池云 | 搭建浅层神经网络"Hello world"
作为图像识别与机器视觉界的 “hello world!” ,MNIST (“Modified National Institute of Standards and Technology”)数据集有着举足轻重的地位。基本上每本人工智能、机器学习相关的书上都以它作为开始。下面我们会用 TensorFlow 搭建一个浅层的神经网络来运行 “hello world!” 模型。 以下内容和模块的...原创 2020-03-09 14:56:43 · 894 阅读 · 0 评论 -
神经网络 - 前馈神经网络概要简述
神经网络 - 前馈神经网络人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。神经网络是个非常大的科目。今天我们就介绍下最简单的模型前馈神经网络。从神经元细胞说起人的大脑拥有数以亿计的神经元细胞。他们彼此互相相连,来给大脑传递信息,帮助人类做出决策,分类事物,以及各种运算等。神...原创 2019-12-09 16:38:49 · 1452 阅读 · 0 评论