Andrej Karpathy | 详解神经网络和反向传播(基于micrograd)

前特斯拉AI高级总监Andrej Karpathy通过2小时25分钟的课程,基于micrograd详细讲解了神经网络和反向传播,包括手动反向传播、实现微型autograd引擎、构建神经网络库等,并通过PyTorch进行比较。课程适合初学者,深入浅出地介绍了深度学习的核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D

Andrej Karpathy,前特斯拉 AI 高级总监、曾设计并担任斯坦福深度学习课程 CS231n 讲师、OpenAI 创始成员和研究科学家。在 7 月离职特斯拉后,Andrej 在家录制了一个详解反向传播的课程,自信表示“这是 8 年来领域内对神经网络和反向传播的最佳讲解”,并在推特打赌“看不懂就吃鞋”。

在这里插入图片描述

虽然很想看 Andrej 直播吃鞋,但实话实说,作为小白的我,好像真的看懂了。

课程视频

在这里插入图片描述

【中英字幕】Andrej Karpathy | 详解神经网络和反向传播(基于micrograd)

字幕由矩池云翻译制作

课程介绍

课程时长 2 小时 25 分钟,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值