LeetCode-51. N 皇后

这篇博客详细介绍了如何运用回溯算法解决经典的八皇后问题。内容包括问题定义、解题思路、代码实现和关键判断函数。通过递归的backtrack函数,在二维棋盘上放置皇后,确保没有两个皇后在同一行、同一列或同一对角线上。文章还展示了C++代码示例,以帮助读者理解算法的运作过程。
摘要由CSDN通过智能技术生成

一、题目

在这里插入图片描述

二、思路

1、皇后的限制:皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。(注意不只是相邻的两个,是整个矩阵的斜线)
2、采用回溯的方法,当当前条件满足时可以进行回溯
3、判断条件,注意是判断整个矩阵的一列、左上角的斜线、右上角的斜线,要用for循环,不能用if
4、当到达n层时,添加进去输出数组

三、代码

class Solution
{
public:
    vector<vector<string>> OutPut;
    vector<vector<string>> solveNQueens(int n)
    {
        vector<string> res;
        //把'.'重复n次
        string str = string(n, '.');
        for (int i = 0; i < n; ++i)
        {
            res.emplace_back(str);
        }
        backtrack(res, n, 0);
        return OutPut;
    }
    void backtrack(vector<string> &res, const int &n, int row)
    {
        if (row == n)
        {
            OutPut.emplace_back(res);
            return;
        }
        else if (row > n)
        {
            return;
        }
        for (int col = 0; col < n; ++col)
        {
            if (is_ok(res, row - 1, col, n))
            {
                res[row][col] = 'Q';
                backtrack(res, n, row + 1);
                res[row][col] = '.';
            }
        }
    }
    bool is_ok(vector<string> &res, int row, int col, int n)
    {
        //判断正上方一线
        for (int i = 0; i <= row; ++i)
        {
            if (res[i][col] == 'Q')
            {
                return false;
            }
        }
        //判断左上方斜线
        for (int i = row, j = col - 1; i >= 0 && j >= 0; --i, --j)
        {
            if (res[i][j] == 'Q')
            {
                return false;
            }
        }
        //判断在右上方
        for (int i = row, j = col + 1; i >= 0 && j < n; --i, ++j)
        {
            if (res[i][j] == 'Q')
            {
                return false;
            }
        }
        return true;
    }
};
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值