蓝桥杯——四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
此代码耗时12ms
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while(cin.hasNext()) {
int a,b,c;
double d;
int n =cin.nextInt();
double max=Math.sqrt(n);
for( a=0;a<=max;a++) {
for( b=a;b<=max;b++) {
for( c=b;c<=max;c++) {
d=Math.sqrt(n-a*a-b*b-c*c);
if(d==(int)d) {//只需验证d是否为整数即可,abc必定为整数;
System.out.println(a+" "+b+" "+c+" "+(int)d);
return;
}
}
}
}
}
}
}