蓝桥杯——四平方和(暴力三重for循环)

蓝桥杯——四平方和

四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。

比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)

对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法

程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入:
5
则程序应该输出:
0 0 1 2

再例如,输入:
12
则程序应该输出:
0 2 2 2

再例如,输入:
773535
则程序应该输出:
1 1 267 838
此代码耗时12ms
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms

import java.util.*;
public class Main {
	public static void main(String[] args) {
	Scanner cin = new Scanner(System.in);
	while(cin.hasNext()) {
		int a,b,c;
		double d;
		int n =cin.nextInt();
		double max=Math.sqrt(n);
		for( a=0;a<=max;a++) {
			for( b=a;b<=max;b++) {
				for( c=b;c<=max;c++) {
					d=Math.sqrt(n-a*a-b*b-c*c);
					if(d==(int)d) {//只需验证d是否为整数即可,abc必定为整数;
						System.out.println(a+" "+b+" "+c+" "+(int)d);
						return;
					}
				}
			}
		}
	}
}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值