Lattice paths(数学)

这篇博客探讨了Lattice Paths问题,通过组合数学的知识解释如何从40步中选择20步走向目标,同时引入了递推思路,每个路径的计数等于上一行同一列和左一行同一列的和。作者在文中分享了他们的发现和实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

在这里插入图片描述

思路1

组合数学的知识

在走完一个完整的路径的时候,都会向右走20步,向下走20步,所以就是从40步里选20步,C(20,40)

思路二

每一条路径grid[i][j]=grid[i-1][j]+grid[i][j-1]
在这里插入图片描述
发现新大陆
在这里插入图片描述

代码2

#include <iostream>
#include <string.h>

#define MAXX 3005
using namespace std;
long long grid[22][22];  //输出很大,要用长一点的

int main()
{
    memset(grid, 0, sizeof grid);
    for (int i = 1; i <= 21; ++i)  //要从1开始,不然会溢出
    {
        for (int j = 1; j <= 21; ++j)
        {
            if (i == 1 && j == 1)
                grid[i][j] = 1;
            else
                grid[i][j] = grid[i - 1][j] + grid[i][j - 1];
        }
    }
    cout << grid[21][21];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值