博弈论 思路及模板代码

本文探讨了公平组合游戏的概念,重点解析了Nim博弈、台阶-Nim游戏、集合-Nim游戏和拆分-Nim游戏的解题思路与先手策略。通过实例演示和代码模板,揭示了如何利用必胜状态和必败状态来判断先手是否必胜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公平组合游戏ICG

定义

若一个游戏满足:

  • 由两名玩家交替行动
  • 在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关
  • 不能行动的玩家判负

则称该游戏为一个公平组合游戏。

Nim博弈属于公平组合游戏,但是城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子。胜负判定也比较复杂,不满足条件2和条件3。


例题举例1:AcWing 891.Nim游戏

给定n堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。

例如:有两堆石子,第一堆有2个,第二堆有3个,先手必胜。

操作步骤:

  1. 先手从第二堆拿走1个,此时第一堆和第二堆数目相同
  2. 无论后手怎么拿,先手都在另外一堆石子中取走相同数量的石子即可。

解题思路

必胜状态和必败状态
在解决这个问题之前,先来了解两个名词:
必胜状态,先手进行某一个操作,留给后手是一个必败状态时,对于先手来说是一个必胜状态。即先手可以走到某一个必败状态。
必败状态,先手无论如何操作,留给后手都是一个必胜状态时,对于先手来说是一个必败状态。即先手走不到任何一个必败状态。
在这里插入图片描述
在这里插入图片描述

模板代码

#include<iostream>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    int res=0,x;   //为什么res可以初始化为0?
    while(n--)     //因为这是异或操作,0异或一个数,等于这个数本身
    {              //因此res可以初始化为0
        scanf("%d",&x);
        res^=x;
    }
    if(res) puts("Yes");
    else puts("No");
    return 0;
}

例题举例2:AcWing 892.台阶-Nim游戏

现在,有一个 n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i 级台阶上有 ai 个石子(i≥1)。
两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。
已经拿到地面上的石子不能再拿,最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。

解题思路

此时我们需要将奇数台阶看做一个经典的Nim游戏,如果先手时奇数台阶上的值的异或值为0,则先手必败,反之必胜
证明:
先手时,如果奇数台阶异或非0,根据经典Nim游戏,先手总有一种方式使奇数台阶异或为0,于是先手留了奇数台阶异或为0的状态给后手
于是轮到后手:

  • ①当后手移动偶数台阶上的石子时,先手只需将对手移动的石子继续移到下一个台阶,这样奇数台阶的石子相当于没变,于是留给后手的又是奇数台阶异或为0的状态
  • ②当后手移动奇数台阶上的石子时,留给先手的奇数台阶异或非0,根据经典Nim游戏,先手总能找出一种方案使奇数台阶异或为0

因此无论后手如何移动,先手总能通过操作把奇数异或为0的情况留给后手,当奇数台阶全为0时,只留下偶数台阶上有石子
(核心就是:先手总是把奇数台阶异或为0的状态留给对面,即总是将必败态交给对面)

因为偶数台阶上的石子要想移动到地面,必然需要经过偶数次移动,又因为奇数台阶全0的情况是留给后手的,因此先手总是可以将石子移动到地面,当将最后一个(堆)石子移动到地面时,后手无法操作,即后手失败。

因此如果先手时奇数台阶上的值的异或值为非0,则先手必胜,反之必败!

模板代码

#include<iostream>
using namespace std;
int main()
{
    int n,x,res=0;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&x);
        if(i&1) res^=x;
    }
    if(res) puts("Yes");
    else puts("No");
    return 0;
}

例题举例3:AcWing 893.集合-Nim游戏

给定 n 堆石子以及一个由 k 个不同正整数构成的数字集合 S。

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

解题思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
性质1修改成: S G ( k ) SG(k) SG(k)可以走到 0 − k − 1 0−k−1 0k1的任何一个状态
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模板代码

#include<iostream>
#include<unordered_set>
#include<cstring>
using namespace std;
const int N=110,M=10010;
int s[N],f[M];
int k,n,h;
int sg(int x)  
{
    if(f[x]!=-1) return f[x];     //记忆化搜索,只要算过了,就不重复算了
    unordered_set<int> c;   //用一个哈希表存储由起点产生的每个局面
    for(int i=0;i<k;i++)                        //递归的
        if(x-s[i]>=0)   //>=,不是>
            c.insert(sg(x-s[i]));
    for(int i=0;;i++)
        if(!c.count(i))            //计算sg(起点)
            return f[x]=i;
}
int main()
{
    memset(f,-1,sizeof(f));   //初始化为-1
    scanf("%d",&k);
    for(int i=0;i<k;i++) scanf("%d",&s[i]);
    scanf("%d",&n);
    int res=0;
    while(n--)
    {
        scanf("%d",&h);
        res^=sg(h);
    }
    if(res) puts("Yes");
    else puts("No");
    return 0;
}

例题举例4:AcWing 894.拆分-Nim游戏

给定 n 堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为 0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

解题思路

总数在操作过程中可能会变多,但是单堆的最大值会变小,所以这个过程是一定可以停止的。
在这里插入图片描述

模板代码

#include<iostream>
#include<cstring>
#include<unordered_set>
using namespace std;
const int N=110;
int n,a;
int s[N],f[N];
int sg(int x)
{
    unordered_set<int> c;
    if(f[x]!=-1) return f[x];
    for(int i=0;i<x;i++)          //拆分成两个局面
        for(int j=0;j<=i;j++)     //规定一个大一个小
            c.insert(sg(i)^sg(j));    //多个独立局面的SG值,等于这些局面SG值得异或和
    for(int i=0;;i++)//mex操作
        if(!c.count(i))
            return f[x]=i; //当递归回第一层时,返回SG(x1)的值,即要用来异或的值
}
int main()
{
    scanf("%d",&n);
    memset(f,-1,sizeof(f));
    int res=0;
    while(n--)
    {
        scanf("%d",&a);
        res^=sg(a);
    }
    if(res) puts("Yes");
    else puts("No");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值