数据库的范式理论及相关证明

定义

规范化

将一个低一级的关系模式通过模式分解可以转换为若干个高一级范式的关系模式的集合,这种过程就叫规范化


第一范式

作为一个二维表,关系要符合一个最基本的条件:每一个分量必须是不可分的数据项。满足了这个条件的关系模式就属于第一范式(1NF)


第二范式

R ∈ 1 N F R∈1NF R1NF,且每一个非主属性完全函数依赖于任何一个候选码,则 R ∈ 2 N F R∈2NF R2NF


第三范式

设关系模式 R < U , F > ∈ 1 N F R<U,F>∈1NF R<U,F>∈1NF,若 R R R中不存在这样的码 X X X,属性组 Y Y Y及非主属性 Z ( Z ∉ Y ) Z(Z\notin Y) Z(Z/Y),使得 X → Y X→Y XY Y → Z Y→Z YZ成立, Y → X Y→X YX不成立,则称 R < U , F > ∈ 3 N F R<U,F>∈3NF R<U,F>∈3NF

每一个非主属性既不传递依赖于码,也不部分依赖于码
所以,如果 R ∈ 3 N F R∈3NF R3NF,则必有 R ∈ 2 N F R∈2NF R2NF


BCNF范式

关系模式 R < U , F > ∈ 1 N F R<U,F>∈1NF R<U,F>∈1NF,若 X → Y X→Y XY Y ∉ X Y\notin X Y/X X X X必含有码,则 R < U , F > ∈ B C N F R<U,F>∈BCNF R<U,F>∈BCNF
也就是说,关系模式 R < U , F > R<U,F> R<U,F>中,若每一个决定因素都包含码,则 R < U , F > ∈ B C N F R<U,F>∈BCNF R<U,F>∈BCNF

由BCNF范式的定义可以得到结论,一个满足BCNF的关系模式有:

  • 所有非主属性对每一个码都是完全函数依赖
  • 所有主属性对每一个不包含它的码也是完全函数依赖
  • 没有任何属性完全依赖于非码的任何一组属性

由于 R ∈ B C N F R∈BCNF RBCNF,按定义排除了对任何属性对码的传递依赖与部分依赖,所以称 R ∈ 3 N F R∈3NF R3NF


多值依赖

R ( U ) R(U) R(U)是属性集 U U U上的一个关系模式。 X X X Y Y Y Z Z Z U U U的子集,并且 Z = U − X − Y Z=U-X-Y Z=UXY。关系模式 R ( U ) R(U) R(U)中多值依赖 X → → Y X→→Y X→→Y成立,当且仅当 R ( U ) R(U) R(U)的任一关系 r r r,给定一对 ( x , z ) (x,z) (x,z)的值,有一组 Y Y Y的值,这组值仅仅决定于 x x x值而与 z z z值无关

另一形式化的定义:
R ( U ) R(U) R(U)的任一关系 r r r中,如果存在元组 t t t s s s使得 t [ X ] = s [ X ] t[X]=s[X] t[X]=s[X],那么交换 t t t s s s元组的 Y Y Y值所得的两个新元组必在 r r r中,则 Y Y Y多值依赖于 X X X,记为 X → → Y X→→Y X→→Y,这里 X X X Y Y Y U U U的子集, Z = U − X − Y Z=U-X-Y Z=UXY


证明

R ∈ 3 N F R∈3NF R3NF,则 R ∈ 2 N F R∈2NF R2NF

在这里插入图片描述
另一种证明思路:
在这里插入图片描述


R ∈ B C N F R∈BCNF RBCNF,则 R ∈ 3 N F R∈3NF R3NF

在这里插入图片描述


任何一个二目关系 R ∈ B C N F R∈BCNF RBCNF

在这里插入图片描述


证明多值依赖的传递性

假若 X X X Y Y Y Z Z Z两两不相交, X → → Y X→→Y X→→Y Y → → Z Y→→Z Y→→Z,则 X → → Z − Y X→→Z-Y X→→ZY
在这里插入图片描述
在这里插入图片描述


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值