递归步骤
- 在方法中需递归几个,每个递归传递的值,以及对其返回值的处理。(深度优先,是将深处节点全访问了一遍后[因此可能有多个递归],再回过头访问较近的节点)
- 结束条件(需思考全面,很多问题不止一个结束条件),以及当符合结束条件时,应该返回什么值。
- 每次递归返回的值(注意是每次递归的返回值而不是符合结束条件时的返回值)
力扣递归题
爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
class Solution {
//下楼与爬楼是一样的
public int climbStairs(int n) {
//两个结束条件
if(n==0) return 1;
if(n<0) return 0;
int j=0;
//两个递归
j=j+climbStairs(n-1);
j=j+climbStairs(n-2);
//每次递归返回的值
return j;
}
}
以上将导致递归会有大量的重复计算,因为方法中有多个递归。
记忆化技术:减少递归中的重复计算,以空间换时间
利用Map集合,对已计算过的结果进行存储,当需重复计算时,直接取出响应结果,节省时间。
class Solution {
//map存放<每个台阶,有多少方法到楼顶>
Map<Integer,Integer> map=new HashMap<>();
public int climbStairs(int n) {
if(n==0) return 1;
if(n<0) return 0;
//若当前台阶已走过,直接返回已记录的个数
if(map.containsKey(n)) return map.get(n);
//否则说明没走过,直接递归
int j=0;
j=j+climbStairs(n-1);
j=j+climbStairs(n-2);
//记录当前台阶,有多少种方法到达楼顶
map.put(n,j);
return j;
}
}
- 补充知识点
-
尾递归:我们需尽可能的使用尾递归,原因在于若我们在递归去往深处节点的过程中存放数据生成结果的话,我们一般需要额外的空间用来存放这些数据,但倘若我们使用尾递归,则递归去往深处节点的过程中不存放数据,数据结果是在递归归来的途中生成的,那么用到的空间只有O(1)。
-
递归快速幂:
-
迭代:相较于递归,它没有归途。