二叉树遍历【前序、中序、后序、层序】【java实现】

  • 前序、中序、后序遍历采用深度优先思想
  • 前序遍历【根-左-右】
    -
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        digui(list,root);
        return list;
    }
    public void digui(List<Integer> list,TreeNode root){
        if(root==null) return;
        list.add(root.val);
        digui(list,root.left);
        digui(list,root.right);
    }
}
  • 中序遍历【左-根-右】
    在这里插入图片描述
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        digui(list,root);
        return list;
    }
    public void digui(List<Integer> list,TreeNode root){
        if(root==null) return;
        digui(list,root.left);
        list.add(root.val);
        digui(list,root.right);
    }
}
  • 后序遍历【左-右-根】
    在这里插入图片描述
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        digui(list,root);
        return list;
    }
    public void digui(List<Integer> list,TreeNode root){
        if(root==null) return;
        digui(list,root.left);
        digui(list,root.right);
        list.add(root.val);
    }
}
  • 层序遍历采用广度优先思想
  • 层序遍历
    在这里插入图片描述
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        Queue<TreeNode> que = new LinkedList<>();
        if(root==null) return new ArrayList<>();
        que.offer(root);
        List<List<Integer>> l1 = new ArrayList<>();
        while(que.size()>0){
            int size = que.size();
            List<Integer> l2 = new ArrayList<>();
            for(int i=0;i<size;i++){
                TreeNode r = que.poll();
                l2.add(r.val);
                if(r.left!=null) que.offer(r.left);
                if(r.right!=null) que.offer(r.right);
            }
            l1.add(l2);
        }
        return l1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值